![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axmulcom | Structured version Visualization version GIF version |
Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 11174 be used later. Instead, use mulcom 11196. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axmulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 11137 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
2 | mulcnsrec 11139 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([⟨𝑥, 𝑦⟩]◡ E · [⟨𝑧, 𝑤⟩]◡ E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩]◡ E ) | |
3 | mulcnsrec 11139 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → ([⟨𝑧, 𝑤⟩]◡ E · [⟨𝑥, 𝑦⟩]◡ E ) = [⟨((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))⟩]◡ E ) | |
4 | mulcomsr 11084 | . . 3 ⊢ (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥) | |
5 | mulcomsr 11084 | . . . 4 ⊢ (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦) | |
6 | 5 | oveq2i 7420 | . . 3 ⊢ (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)) |
7 | 4, 6 | oveq12i 7421 | . 2 ⊢ ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))) |
8 | mulcomsr 11084 | . . . 4 ⊢ (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦) | |
9 | mulcomsr 11084 | . . . 4 ⊢ (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥) | |
10 | 8, 9 | oveq12i 7421 | . . 3 ⊢ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) |
11 | addcomsr 11082 | . . 3 ⊢ ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)) | |
12 | 10, 11 | eqtri 2761 | . 2 ⊢ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)) |
13 | 1, 2, 3, 7, 12 | ecovcom 8817 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 E cep 5580 ◡ccnv 5676 (class class class)co 7409 Rcnr 10860 -1Rcm1r 10863 +R cplr 10864 ·R cmr 10865 ℂcc 11108 · cmul 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ec 8705 df-qs 8709 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-plp 10978 df-mp 10979 df-ltp 10980 df-enr 11050 df-nr 11051 df-plr 11052 df-mr 11053 df-c 11116 df-mul 11122 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |