Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axmulcom | Structured version Visualization version GIF version |
Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 10680 be used later. Instead, use mulcom 10702. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axmulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 10643 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
2 | mulcnsrec 10645 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E · [〈𝑧, 𝑤〉]◡ E ) = [〈((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))〉]◡ E ) | |
3 | mulcnsrec 10645 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E · [〈𝑥, 𝑦〉]◡ E ) = [〈((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))〉]◡ E ) | |
4 | mulcomsr 10590 | . . 3 ⊢ (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥) | |
5 | mulcomsr 10590 | . . . 4 ⊢ (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦) | |
6 | 5 | oveq2i 7182 | . . 3 ⊢ (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)) |
7 | 4, 6 | oveq12i 7183 | . 2 ⊢ ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))) |
8 | mulcomsr 10590 | . . . 4 ⊢ (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦) | |
9 | mulcomsr 10590 | . . . 4 ⊢ (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥) | |
10 | 8, 9 | oveq12i 7183 | . . 3 ⊢ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) |
11 | addcomsr 10588 | . . 3 ⊢ ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)) | |
12 | 10, 11 | eqtri 2761 | . 2 ⊢ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)) |
13 | 1, 2, 3, 7, 12 | ecovcom 8435 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 E cep 5434 ◡ccnv 5525 (class class class)co 7171 Rcnr 10366 -1Rcm1r 10369 +R cplr 10370 ·R cmr 10371 ℂcc 10614 · cmul 10621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-inf2 9178 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7174 df-oprab 7175 df-mpo 7176 df-om 7601 df-1st 7715 df-2nd 7716 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-1o 8132 df-oadd 8136 df-omul 8137 df-er 8321 df-ec 8323 df-qs 8327 df-ni 10373 df-pli 10374 df-mi 10375 df-lti 10376 df-plpq 10409 df-mpq 10410 df-ltpq 10411 df-enq 10412 df-nq 10413 df-erq 10414 df-plq 10415 df-mq 10416 df-1nq 10417 df-rq 10418 df-ltnq 10419 df-np 10482 df-plp 10484 df-mp 10485 df-ltp 10486 df-enr 10556 df-nr 10557 df-plr 10558 df-mr 10559 df-c 10622 df-mul 10628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |