| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axmulcom | Structured version Visualization version GIF version | ||
| Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 11092 be used later. Instead, use mulcom 11114. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axmulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs 11055 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
| 2 | mulcnsrec 11057 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E · [〈𝑧, 𝑤〉]◡ E ) = [〈((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))〉]◡ E ) | |
| 3 | mulcnsrec 11057 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E · [〈𝑥, 𝑦〉]◡ E ) = [〈((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))〉]◡ E ) | |
| 4 | mulcomsr 11002 | . . 3 ⊢ (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥) | |
| 5 | mulcomsr 11002 | . . . 4 ⊢ (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦) | |
| 6 | 5 | oveq2i 7364 | . . 3 ⊢ (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)) |
| 7 | 4, 6 | oveq12i 7365 | . 2 ⊢ ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))) |
| 8 | mulcomsr 11002 | . . . 4 ⊢ (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦) | |
| 9 | mulcomsr 11002 | . . . 4 ⊢ (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥) | |
| 10 | 8, 9 | oveq12i 7365 | . . 3 ⊢ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) |
| 11 | addcomsr 11000 | . . 3 ⊢ ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)) | |
| 12 | 10, 11 | eqtri 2752 | . 2 ⊢ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)) |
| 13 | 1, 2, 3, 7, 12 | ecovcom 8757 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 E cep 5522 ◡ccnv 5622 (class class class)co 7353 Rcnr 10778 -1Rcm1r 10781 +R cplr 10782 ·R cmr 10783 ℂcc 11026 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ec 8634 df-qs 8638 df-ni 10785 df-pli 10786 df-mi 10787 df-lti 10788 df-plpq 10821 df-mpq 10822 df-ltpq 10823 df-enq 10824 df-nq 10825 df-erq 10826 df-plq 10827 df-mq 10828 df-1nq 10829 df-rq 10830 df-ltnq 10831 df-np 10894 df-plp 10896 df-mp 10897 df-ltp 10898 df-enr 10968 df-nr 10969 df-plr 10970 df-mr 10971 df-c 11034 df-mul 11040 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |