| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axmulcom | Structured version Visualization version GIF version | ||
| Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 11077 be used later. Instead, use mulcom 11099. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axmulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs 11040 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
| 2 | mulcnsrec 11042 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E · [〈𝑧, 𝑤〉]◡ E ) = [〈((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))〉]◡ E ) | |
| 3 | mulcnsrec 11042 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E · [〈𝑥, 𝑦〉]◡ E ) = [〈((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))), ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦))〉]◡ E ) | |
| 4 | mulcomsr 10987 | . . 3 ⊢ (𝑥 ·R 𝑧) = (𝑧 ·R 𝑥) | |
| 5 | mulcomsr 10987 | . . . 4 ⊢ (𝑦 ·R 𝑤) = (𝑤 ·R 𝑦) | |
| 6 | 5 | oveq2i 7363 | . . 3 ⊢ (-1R ·R (𝑦 ·R 𝑤)) = (-1R ·R (𝑤 ·R 𝑦)) |
| 7 | 4, 6 | oveq12i 7364 | . 2 ⊢ ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) = ((𝑧 ·R 𝑥) +R (-1R ·R (𝑤 ·R 𝑦))) |
| 8 | mulcomsr 10987 | . . . 4 ⊢ (𝑦 ·R 𝑧) = (𝑧 ·R 𝑦) | |
| 9 | mulcomsr 10987 | . . . 4 ⊢ (𝑥 ·R 𝑤) = (𝑤 ·R 𝑥) | |
| 10 | 8, 9 | oveq12i 7364 | . . 3 ⊢ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) |
| 11 | addcomsr 10985 | . . 3 ⊢ ((𝑧 ·R 𝑦) +R (𝑤 ·R 𝑥)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)) | |
| 12 | 10, 11 | eqtri 2756 | . 2 ⊢ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) = ((𝑤 ·R 𝑥) +R (𝑧 ·R 𝑦)) |
| 13 | 1, 2, 3, 7, 12 | ecovcom 8753 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 E cep 5518 ◡ccnv 5618 (class class class)co 7352 Rcnr 10763 -1Rcm1r 10766 +R cplr 10767 ·R cmr 10768 ℂcc 11011 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-ni 10770 df-pli 10771 df-mi 10772 df-lti 10773 df-plpq 10806 df-mpq 10807 df-ltpq 10808 df-enq 10809 df-nq 10810 df-erq 10811 df-plq 10812 df-mq 10813 df-1nq 10814 df-rq 10815 df-ltnq 10816 df-np 10879 df-plp 10881 df-mp 10882 df-ltp 10883 df-enr 10953 df-nr 10954 df-plr 10955 df-mr 10956 df-c 11019 df-mul 11025 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |