Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-pre-ltadd | Structured version Visualization version GIF version |
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, justified by Theorem axpre-ltadd 10829. Normally new proofs would use axltadd 10954. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
ax-pre-ltadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 10776 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2112 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2112 | . . 3 wff 𝐵 ∈ ℝ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2112 | . . 3 wff 𝐶 ∈ ℝ |
8 | 3, 5, 7 | w3a 1089 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) |
9 | cltrr 10781 | . . . 4 class <ℝ | |
10 | 1, 4, 9 | wbr 5070 | . . 3 wff 𝐴 <ℝ 𝐵 |
11 | caddc 10780 | . . . . 5 class + | |
12 | 6, 1, 11 | co 7252 | . . . 4 class (𝐶 + 𝐴) |
13 | 6, 4, 11 | co 7252 | . . . 4 class (𝐶 + 𝐵) |
14 | 12, 13, 9 | wbr 5070 | . . 3 wff (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵) |
15 | 10, 14 | wi 4 | . 2 wff (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵)) |
16 | 8, 15 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
Colors of variables: wff setvar class |
This axiom is referenced by: axltadd 10954 |
Copyright terms: Public domain | W3C validator |