MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axltadd Structured version   Visualization version   GIF version

Theorem axltadd 11229
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd 11128 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axltadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))

Proof of Theorem axltadd
StepHypRef Expression
1 ax-pre-ltadd 11128 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
2 ltxrlt 11226 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
323adant3 1133 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
4 readdcl 11135 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 + 𝐴) ∈ ℝ)
5 readdcl 11135 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
6 ltxrlt 11226 . . . . 5 (((𝐶 + 𝐴) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
74, 5, 6syl2an 597 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
873impdi 1351 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
983coml 1128 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
101, 3, 93imtr4d 294 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107   class class class wbr 5106  (class class class)co 7358  cr 11051   + caddc 11055   < cltrr 11056   < clt 11190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-addrcl 11113  ax-pre-ltadd 11128
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-ltxr 11195
This theorem is referenced by:  ltadd2  11260  nnge1  12182  ltoddhalfle  16244  dp2lt  31744  sqrtpwpw2p  45737
  Copyright terms: Public domain W3C validator