| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axltadd | Structured version Visualization version GIF version | ||
| Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd 11205 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| axltadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltadd 11205 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | |
| 2 | ltxrlt 11305 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) | |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) |
| 4 | readdcl 11212 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 + 𝐴) ∈ ℝ) | |
| 5 | readdcl 11212 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) | |
| 6 | ltxrlt 11305 | . . . . 5 ⊢ (((𝐶 + 𝐴) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | |
| 7 | 4, 5, 6 | syl2an 596 | . . . 4 ⊢ (((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
| 8 | 7 | 3impdi 1351 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
| 9 | 8 | 3coml 1127 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
| 10 | 1, 3, 9 | 3imtr4d 294 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 + caddc 11132 <ℝ cltrr 11133 < clt 11269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-addrcl 11190 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: ltadd2 11339 nnge1 12268 ltoddhalfle 16380 dp2lt 32859 sqrtpwpw2p 47552 |
| Copyright terms: Public domain | W3C validator |