MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-ltadd Structured version   Visualization version   GIF version

Theorem axpre-ltadd 10923
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 11048. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 10947. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))

Proof of Theorem axpre-ltadd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10887 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 10887 . . 3 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 10887 . . 3 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 5077 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
5 oveq2 7283 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) = (⟨𝑧, 0R⟩ + 𝐴))
65breq1d 5084 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
74, 6bibi12d 346 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)) ↔ (𝐴 <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩))))
8 breq2 5078 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 oveq2 7283 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) = (⟨𝑧, 0R⟩ + 𝐵))
109breq2d 5086 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → ((⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵)))
118, 10bibi12d 346 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)) ↔ (𝐴 < 𝐵 ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵))))
12 oveq1 7282 . . . . 5 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ + 𝐴) = (𝐶 + 𝐴))
13 oveq1 7282 . . . . 5 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ + 𝐵) = (𝐶 + 𝐵))
1412, 13breq12d 5087 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → ((⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
1514bibi2d 343 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵 ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵)) ↔ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))))
16 ltasr 10856 . . . . . . 7 (𝑧R → (𝑥 <R 𝑦 ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
1716adantr 481 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → (𝑥 <R 𝑦 ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
18 ltresr 10896 . . . . . . 7 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
1918a1i 11 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦))
20 addresr 10894 . . . . . . . . 9 ((𝑧R𝑥R) → (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) = ⟨(𝑧 +R 𝑥), 0R⟩)
21 addresr 10894 . . . . . . . . 9 ((𝑧R𝑦R) → (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) = ⟨(𝑧 +R 𝑦), 0R⟩)
2220, 21breqan12d 5090 . . . . . . . 8 (((𝑧R𝑥R) ∧ (𝑧R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ ⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩))
2322anandis 675 . . . . . . 7 ((𝑧R ∧ (𝑥R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ ⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩))
24 ltresr 10896 . . . . . . 7 (⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩ ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦))
2523, 24bitrdi 287 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
2617, 19, 253bitr4d 311 . . . . 5 ((𝑧R ∧ (𝑥R𝑦R)) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
2726ancoms 459 . . . 4 (((𝑥R𝑦R) ∧ 𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
28273impa 1109 . . 3 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
291, 2, 3, 7, 11, 15, 283gencl 3473 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
3029biimpd 228 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074  (class class class)co 7275  Rcnr 10621  0Rc0r 10622   +R cplr 10625   <R cltr 10627  cr 10870   + caddc 10874   < cltrr 10875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-1p 10738  df-plp 10739  df-ltp 10741  df-enr 10811  df-nr 10812  df-plr 10813  df-ltr 10815  df-0r 10816  df-c 10877  df-r 10881  df-add 10882  df-lt 10884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator