MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-ltadd Structured version   Visualization version   GIF version

Theorem axpre-ltadd 11181
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 11308. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 11205. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))

Proof of Theorem axpre-ltadd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11145 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11145 . . 3 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 11145 . . 3 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 5122 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
5 oveq2 7413 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) = (⟨𝑧, 0R⟩ + 𝐴))
65breq1d 5129 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
74, 6bibi12d 345 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)) ↔ (𝐴 <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩))))
8 breq2 5123 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 oveq2 7413 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) = (⟨𝑧, 0R⟩ + 𝐵))
109breq2d 5131 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → ((⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵)))
118, 10bibi12d 345 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)) ↔ (𝐴 < 𝐵 ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵))))
12 oveq1 7412 . . . . 5 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ + 𝐴) = (𝐶 + 𝐴))
13 oveq1 7412 . . . . 5 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ + 𝐵) = (𝐶 + 𝐵))
1412, 13breq12d 5132 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → ((⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
1514bibi2d 342 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵 ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵)) ↔ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))))
16 ltasr 11114 . . . . . . 7 (𝑧R → (𝑥 <R 𝑦 ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
1716adantr 480 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → (𝑥 <R 𝑦 ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
18 ltresr 11154 . . . . . . 7 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
1918a1i 11 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦))
20 addresr 11152 . . . . . . . . 9 ((𝑧R𝑥R) → (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) = ⟨(𝑧 +R 𝑥), 0R⟩)
21 addresr 11152 . . . . . . . . 9 ((𝑧R𝑦R) → (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) = ⟨(𝑧 +R 𝑦), 0R⟩)
2220, 21breqan12d 5135 . . . . . . . 8 (((𝑧R𝑥R) ∧ (𝑧R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ ⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩))
2322anandis 678 . . . . . . 7 ((𝑧R ∧ (𝑥R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ ⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩))
24 ltresr 11154 . . . . . . 7 (⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩ ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦))
2523, 24bitrdi 287 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
2617, 19, 253bitr4d 311 . . . . 5 ((𝑧R ∧ (𝑥R𝑦R)) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
2726ancoms 458 . . . 4 (((𝑥R𝑦R) ∧ 𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
28273impa 1109 . . 3 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
291, 2, 3, 7, 11, 15, 283gencl 3504 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
3029biimpd 229 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119  (class class class)co 7405  Rcnr 10879  0Rc0r 10880   +R cplr 10883   <R cltr 10885  cr 11128   + caddc 11132   < cltrr 11133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-ni 10886  df-pli 10887  df-mi 10888  df-lti 10889  df-plpq 10922  df-mpq 10923  df-ltpq 10924  df-enq 10925  df-nq 10926  df-erq 10927  df-plq 10928  df-mq 10929  df-1nq 10930  df-rq 10931  df-ltnq 10932  df-np 10995  df-1p 10996  df-plp 10997  df-ltp 10999  df-enr 11069  df-nr 11070  df-plr 11071  df-ltr 11073  df-0r 11074  df-c 11135  df-r 11139  df-add 11140  df-lt 11142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator