Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-pre-mulgt0 | Structured version Visualization version GIF version |
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, justified by Theorem axpre-mulgt0 10855. Normally new proofs would use axmulgt0 10980. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
ax-pre-mulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 10801 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | cc0 10802 | . . . . 5 class 0 | |
8 | cltrr 10806 | . . . . 5 class <ℝ | |
9 | 7, 1, 8 | wbr 5070 | . . . 4 wff 0 <ℝ 𝐴 |
10 | 7, 4, 8 | wbr 5070 | . . . 4 wff 0 <ℝ 𝐵 |
11 | 9, 10 | wa 395 | . . 3 wff (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) |
12 | cmul 10807 | . . . . 5 class · | |
13 | 1, 4, 12 | co 7255 | . . . 4 class (𝐴 · 𝐵) |
14 | 7, 13, 8 | wbr 5070 | . . 3 wff 0 <ℝ (𝐴 · 𝐵) |
15 | 11, 14 | wi 4 | . 2 wff ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵)) |
16 | 6, 15 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
Colors of variables: wff setvar class |
This axiom is referenced by: axmulgt0 10980 |
Copyright terms: Public domain | W3C validator |