| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > ax-pre-mulgt0 | Structured version Visualization version GIF version | ||
| Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, justified by Theorem axpre-mulgt0 11189. Normally new proofs would use axmulgt0 11316. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| ax-pre-mulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cr 11135 | . . . 4 class ℝ | |
| 3 | 1, 2 | wcel 2107 | . . 3 wff 𝐴 ∈ ℝ | 
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2107 | . . 3 wff 𝐵 ∈ ℝ | 
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) | 
| 7 | cc0 11136 | . . . . 5 class 0 | |
| 8 | cltrr 11140 | . . . . 5 class <ℝ | |
| 9 | 7, 1, 8 | wbr 5123 | . . . 4 wff 0 <ℝ 𝐴 | 
| 10 | 7, 4, 8 | wbr 5123 | . . . 4 wff 0 <ℝ 𝐵 | 
| 11 | 9, 10 | wa 395 | . . 3 wff (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) | 
| 12 | cmul 11141 | . . . . 5 class · | |
| 13 | 1, 4, 12 | co 7412 | . . . 4 class (𝐴 · 𝐵) | 
| 14 | 7, 13, 8 | wbr 5123 | . . 3 wff 0 <ℝ (𝐴 · 𝐵) | 
| 15 | 11, 14 | wi 4 | . 2 wff ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵)) | 
| 16 | 6, 15 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | 
| Colors of variables: wff setvar class | 
| This axiom is referenced by: axmulgt0 11316 | 
| Copyright terms: Public domain | W3C validator |