Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-regs Structured version   Visualization version   GIF version

Axiom ax-regs 35060
Description: A strong version of the Axiom of Regularity. It states that if there exists a set with property 𝜑, then there must exist a set with property 𝜑 such that none of its elements have property 𝜑. This axiom can be derived from the axioms of ZF set theory as shown in axregs 35073, but this derivation relies on ax-inf2 9556 and is thus not possible in a finitist context. (Contributed by BTernaryTau, 29-Dec-2025.)
Assertion
Ref Expression
ax-regs (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦𝜑) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑))))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Axiom ax-regs
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2wex 1779 . 2 wff 𝑥𝜑
4 vy . . . . . . 7 setvar 𝑦
52, 4weq 1962 . . . . . 6 wff 𝑥 = 𝑦
65, 1wi 4 . . . . 5 wff (𝑥 = 𝑦𝜑)
76, 2wal 1538 . . . 4 wff 𝑥(𝑥 = 𝑦𝜑)
8 vz . . . . . . 7 setvar 𝑧
98, 4wel 2110 . . . . . 6 wff 𝑧𝑦
102, 8weq 1962 . . . . . . . . 9 wff 𝑥 = 𝑧
1110, 1wi 4 . . . . . . . 8 wff (𝑥 = 𝑧𝜑)
1211, 2wal 1538 . . . . . . 7 wff 𝑥(𝑥 = 𝑧𝜑)
1312wn 3 . . . . . 6 wff ¬ ∀𝑥(𝑥 = 𝑧𝜑)
149, 13wi 4 . . . . 5 wff (𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑))
1514, 8wal 1538 . . . 4 wff 𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑))
167, 15wa 395 . . 3 wff (∀𝑥(𝑥 = 𝑦𝜑) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑)))
1716, 4wex 1779 . 2 wff 𝑦(∀𝑥(𝑥 = 𝑦𝜑) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑)))
183, 17wi 4 1 wff (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦𝜑) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑))))
Colors of variables: wff setvar class
This axiom is referenced by:  axreg  35061  axregscl  35062
  Copyright terms: Public domain W3C validator