| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-regs | Structured version Visualization version GIF version | ||
| Description: A strong version of the Axiom of Regularity. It states that if there exists a set with property 𝜑, then there must exist a set with property 𝜑 such that none of its elements have property 𝜑. This axiom can be derived from the axioms of ZF set theory as shown in axregs 35113, but this derivation relies on ax-inf2 9526 and is thus not possible in a finitist context. (Contributed by BTernaryTau, 29-Dec-2025.) |
| Ref | Expression |
|---|---|
| ax-regs | ⊢ (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wex 1780 | . 2 wff ∃𝑥𝜑 |
| 4 | vy | . . . . . . 7 setvar 𝑦 | |
| 5 | 2, 4 | weq 1963 | . . . . . 6 wff 𝑥 = 𝑦 |
| 6 | 5, 1 | wi 4 | . . . . 5 wff (𝑥 = 𝑦 → 𝜑) |
| 7 | 6, 2 | wal 1539 | . . . 4 wff ∀𝑥(𝑥 = 𝑦 → 𝜑) |
| 8 | vz | . . . . . . 7 setvar 𝑧 | |
| 9 | 8, 4 | wel 2111 | . . . . . 6 wff 𝑧 ∈ 𝑦 |
| 10 | 2, 8 | weq 1963 | . . . . . . . . 9 wff 𝑥 = 𝑧 |
| 11 | 10, 1 | wi 4 | . . . . . . . 8 wff (𝑥 = 𝑧 → 𝜑) |
| 12 | 11, 2 | wal 1539 | . . . . . . 7 wff ∀𝑥(𝑥 = 𝑧 → 𝜑) |
| 13 | 12 | wn 3 | . . . . . 6 wff ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑) |
| 14 | 9, 13 | wi 4 | . . . . 5 wff (𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 15 | 14, 8 | wal 1539 | . . . 4 wff ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 16 | 7, 15 | wa 395 | . . 3 wff (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 17 | 16, 4 | wex 1780 | . 2 wff ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 18 | 3, 17 | wi 4 | 1 wff (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: axreg 35097 axregscl 35098 |
| Copyright terms: Public domain | W3C validator |