| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-regs | Structured version Visualization version GIF version | ||
| Description: A strong version of the Axiom of Regularity. It states that if there exists a set with property 𝜑, then there must exist a set with property 𝜑 such that none of its elements have property 𝜑. This axiom can be derived from the axioms of ZF set theory as shown in axregs 35073, but this derivation relies on ax-inf2 9556 and is thus not possible in a finitist context. (Contributed by BTernaryTau, 29-Dec-2025.) |
| Ref | Expression |
|---|---|
| ax-regs | ⊢ (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wex 1779 | . 2 wff ∃𝑥𝜑 |
| 4 | vy | . . . . . . 7 setvar 𝑦 | |
| 5 | 2, 4 | weq 1962 | . . . . . 6 wff 𝑥 = 𝑦 |
| 6 | 5, 1 | wi 4 | . . . . 5 wff (𝑥 = 𝑦 → 𝜑) |
| 7 | 6, 2 | wal 1538 | . . . 4 wff ∀𝑥(𝑥 = 𝑦 → 𝜑) |
| 8 | vz | . . . . . . 7 setvar 𝑧 | |
| 9 | 8, 4 | wel 2110 | . . . . . 6 wff 𝑧 ∈ 𝑦 |
| 10 | 2, 8 | weq 1962 | . . . . . . . . 9 wff 𝑥 = 𝑧 |
| 11 | 10, 1 | wi 4 | . . . . . . . 8 wff (𝑥 = 𝑧 → 𝜑) |
| 12 | 11, 2 | wal 1538 | . . . . . . 7 wff ∀𝑥(𝑥 = 𝑧 → 𝜑) |
| 13 | 12 | wn 3 | . . . . . 6 wff ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑) |
| 14 | 9, 13 | wi 4 | . . . . 5 wff (𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 15 | 14, 8 | wal 1538 | . . . 4 wff ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 16 | 7, 15 | wa 395 | . . 3 wff (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 17 | 16, 4 | wex 1779 | . 2 wff ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 18 | 3, 17 | wi 4 | 1 wff (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: axreg 35061 axregscl 35062 |
| Copyright terms: Public domain | W3C validator |