Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-regs Structured version   Visualization version   GIF version

Axiom ax-regs 35096
Description: A strong version of the Axiom of Regularity. It states that if there exists a set with property 𝜑, then there must exist a set with property 𝜑 such that none of its elements have property 𝜑. This axiom can be derived from the axioms of ZF set theory as shown in axregs 35113, but this derivation relies on ax-inf2 9526 and is thus not possible in a finitist context. (Contributed by BTernaryTau, 29-Dec-2025.)
Assertion
Ref Expression
ax-regs (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦𝜑) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑))))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Axiom ax-regs
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2wex 1780 . 2 wff 𝑥𝜑
4 vy . . . . . . 7 setvar 𝑦
52, 4weq 1963 . . . . . 6 wff 𝑥 = 𝑦
65, 1wi 4 . . . . 5 wff (𝑥 = 𝑦𝜑)
76, 2wal 1539 . . . 4 wff 𝑥(𝑥 = 𝑦𝜑)
8 vz . . . . . . 7 setvar 𝑧
98, 4wel 2111 . . . . . 6 wff 𝑧𝑦
102, 8weq 1963 . . . . . . . . 9 wff 𝑥 = 𝑧
1110, 1wi 4 . . . . . . . 8 wff (𝑥 = 𝑧𝜑)
1211, 2wal 1539 . . . . . . 7 wff 𝑥(𝑥 = 𝑧𝜑)
1312wn 3 . . . . . 6 wff ¬ ∀𝑥(𝑥 = 𝑧𝜑)
149, 13wi 4 . . . . 5 wff (𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑))
1514, 8wal 1539 . . . 4 wff 𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑))
167, 15wa 395 . . 3 wff (∀𝑥(𝑥 = 𝑦𝜑) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑)))
1716, 4wex 1780 . 2 wff 𝑦(∀𝑥(𝑥 = 𝑦𝜑) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑)))
183, 17wi 4 1 wff (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦𝜑) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑥(𝑥 = 𝑧𝜑))))
Colors of variables: wff setvar class
This axiom is referenced by:  axreg  35097  axregscl  35098
  Copyright terms: Public domain W3C validator