Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axregscl Structured version   Visualization version   GIF version

Theorem axregscl 35062
Description: A version of ax-regs 35060 with a class variable instead of a wff variable. Axiom D in Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory (1940), p. 6. (Contributed by BTernaryTau, 30-Dec-2025.)
Assertion
Ref Expression
axregscl (∃𝑥 𝑥𝐴 → ∃𝑦(𝑦𝐴 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴,𝑧

Proof of Theorem axregscl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2811 . . 3 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
21cbvexvw 2037 . 2 (∃𝑥 𝑥𝐴 ↔ ∃𝑤 𝑤𝐴)
3 ax-regs 35060 . . 3 (∃𝑤 𝑤𝐴 → ∃𝑦(∀𝑤(𝑤 = 𝑦𝑤𝐴) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝐴))))
4 eleq1w 2811 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
54equsalvw 2004 . . . . 5 (∀𝑤(𝑤 = 𝑦𝑤𝐴) ↔ 𝑦𝐴)
6 eleq1w 2811 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝐴𝑧𝐴))
76equsalvw 2004 . . . . . . . 8 (∀𝑤(𝑤 = 𝑧𝑤𝐴) ↔ 𝑧𝐴)
87notbii 320 . . . . . . 7 (¬ ∀𝑤(𝑤 = 𝑧𝑤𝐴) ↔ ¬ 𝑧𝐴)
98imbi2i 336 . . . . . 6 ((𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝐴)) ↔ (𝑧𝑦 → ¬ 𝑧𝐴))
109albii 1819 . . . . 5 (∀𝑧(𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝐴)) ↔ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝐴))
115, 10anbi12i 628 . . . 4 ((∀𝑤(𝑤 = 𝑦𝑤𝐴) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝐴))) ↔ (𝑦𝐴 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝐴)))
1211exbii 1848 . . 3 (∃𝑦(∀𝑤(𝑤 = 𝑦𝑤𝐴) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝐴))) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝐴)))
133, 12sylib 218 . 2 (∃𝑤 𝑤𝐴 → ∃𝑦(𝑦𝐴 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝐴)))
142, 13sylbi 217 1 (∃𝑥 𝑥𝐴 → ∃𝑦(𝑦𝐴 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-regs 35060
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803
This theorem is referenced by:  axregszf  35063
  Copyright terms: Public domain W3C validator