| Step | Hyp | Ref
| Expression |
| 1 | | eleq1w 2811 |
. . 3
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
| 2 | 1 | cbvexvw 2037 |
. 2
⊢
(∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑤 𝑤 ∈ 𝐴) |
| 3 | | ax-regs 35060 |
. . 3
⊢
(∃𝑤 𝑤 ∈ 𝐴 → ∃𝑦(∀𝑤(𝑤 = 𝑦 → 𝑤 ∈ 𝐴) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝐴)))) |
| 4 | | eleq1w 2811 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 5 | 4 | equsalvw 2004 |
. . . . 5
⊢
(∀𝑤(𝑤 = 𝑦 → 𝑤 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
| 6 | | eleq1w 2811 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 7 | 6 | equsalvw 2004 |
. . . . . . . 8
⊢
(∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝐴) ↔ 𝑧 ∈ 𝐴) |
| 8 | 7 | notbii 320 |
. . . . . . 7
⊢ (¬
∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝐴) ↔ ¬ 𝑧 ∈ 𝐴) |
| 9 | 8 | imbi2i 336 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝐴)) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴)) |
| 10 | 9 | albii 1819 |
. . . . 5
⊢
(∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝐴)) ↔ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴)) |
| 11 | 5, 10 | anbi12i 628 |
. . . 4
⊢
((∀𝑤(𝑤 = 𝑦 → 𝑤 ∈ 𝐴) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝐴))) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴))) |
| 12 | 11 | exbii 1848 |
. . 3
⊢
(∃𝑦(∀𝑤(𝑤 = 𝑦 → 𝑤 ∈ 𝐴) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝐴))) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴))) |
| 13 | 3, 12 | sylib 218 |
. 2
⊢
(∃𝑤 𝑤 ∈ 𝐴 → ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴))) |
| 14 | 2, 13 | sylbi 217 |
1
⊢
(∃𝑥 𝑥 ∈ 𝐴 → ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴))) |