Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axreg Structured version   Visualization version   GIF version

Theorem axreg 35061
Description: Derivation of ax-reg 9503 from ax-regs 35060 and Tarski's FOL axiom schemes. This demonstrates the sense in which ax-regs 35060 is a stronger version of ax-reg 9503. (Contributed by BTernaryTau, 30-Dec-2025.)
Assertion
Ref Expression
axreg (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axreg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-regs 35060 . 2 (∃𝑤 𝑤𝑥 → ∃𝑦(∀𝑤(𝑤 = 𝑦𝑤𝑥) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝑥))))
2 elequ1 2116 . . 3 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
32cbvexvw 2037 . 2 (∃𝑤 𝑤𝑥 ↔ ∃𝑦 𝑦𝑥)
42equsalvw 2004 . . . 4 (∀𝑤(𝑤 = 𝑦𝑤𝑥) ↔ 𝑦𝑥)
5 elequ1 2116 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
65equsalvw 2004 . . . . . . 7 (∀𝑤(𝑤 = 𝑧𝑤𝑥) ↔ 𝑧𝑥)
76notbii 320 . . . . . 6 (¬ ∀𝑤(𝑤 = 𝑧𝑤𝑥) ↔ ¬ 𝑧𝑥)
87imbi2i 336 . . . . 5 ((𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝑥)) ↔ (𝑧𝑦 → ¬ 𝑧𝑥))
98albii 1819 . . . 4 (∀𝑧(𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝑥)) ↔ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥))
104, 9anbi12i 628 . . 3 ((∀𝑤(𝑤 = 𝑦𝑤𝑥) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝑥))) ↔ (𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
1110exbii 1848 . 2 (∃𝑦(∀𝑤(𝑤 = 𝑦𝑤𝑥) ∧ ∀𝑧(𝑧𝑦 → ¬ ∀𝑤(𝑤 = 𝑧𝑤𝑥))) ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
121, 3, 113imtr3i 291 1 (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-regs 35060
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator