| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axreg | Structured version Visualization version GIF version | ||
| Description: Derivation of ax-reg 9503 from ax-regs 35060 and Tarski's FOL axiom schemes. This demonstrates the sense in which ax-regs 35060 is a stronger version of ax-reg 9503. (Contributed by BTernaryTau, 30-Dec-2025.) |
| Ref | Expression |
|---|---|
| axreg | ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-regs 35060 | . 2 ⊢ (∃𝑤 𝑤 ∈ 𝑥 → ∃𝑦(∀𝑤(𝑤 = 𝑦 → 𝑤 ∈ 𝑥) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝑥)))) | |
| 2 | elequ1 2116 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
| 3 | 2 | cbvexvw 2037 | . 2 ⊢ (∃𝑤 𝑤 ∈ 𝑥 ↔ ∃𝑦 𝑦 ∈ 𝑥) |
| 4 | 2 | equsalvw 2004 | . . . 4 ⊢ (∀𝑤(𝑤 = 𝑦 → 𝑤 ∈ 𝑥) ↔ 𝑦 ∈ 𝑥) |
| 5 | elequ1 2116 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) | |
| 6 | 5 | equsalvw 2004 | . . . . . . 7 ⊢ (∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝑥) ↔ 𝑧 ∈ 𝑥) |
| 7 | 6 | notbii 320 | . . . . . 6 ⊢ (¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝑥) ↔ ¬ 𝑧 ∈ 𝑥) |
| 8 | 7 | imbi2i 336 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 9 | 8 | albii 1819 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝑥)) ↔ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) |
| 10 | 4, 9 | anbi12i 628 | . . 3 ⊢ ((∀𝑤(𝑤 = 𝑦 → 𝑤 ∈ 𝑥) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝑥))) ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 11 | 10 | exbii 1848 | . 2 ⊢ (∃𝑦(∀𝑤(𝑤 = 𝑦 → 𝑤 ∈ 𝑥) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑤(𝑤 = 𝑧 → 𝑤 ∈ 𝑥))) ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| 12 | 1, 3, 11 | 3imtr3i 291 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-regs 35060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |