Proof of Theorem axregs
| Step | Hyp | Ref
| Expression |
| 1 | | zfregs2 9648 |
. 2
⊢ ({𝑥 ∣ 𝜑} ≠ ∅ → ¬ ∀𝑦 ∈ {𝑥 ∣ 𝜑}∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) |
| 2 | | abn0 4338 |
. 2
⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| 3 | | df-ral 3045 |
. . . 4
⊢
(∀𝑦 ∈
{𝑥 ∣ 𝜑}∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦))) |
| 4 | 3 | notbii 320 |
. . 3
⊢ (¬
∀𝑦 ∈ {𝑥 ∣ 𝜑}∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ ¬ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦))) |
| 5 | | exnal 1827 |
. . 3
⊢
(∃𝑦 ¬
(𝑦 ∈ {𝑥 ∣ 𝜑} → ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) ↔ ¬ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦))) |
| 6 | | annim 403 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ ¬ ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) ↔ ¬ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦))) |
| 7 | | df-clab 2708 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) |
| 8 | | sb6 2086 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 9 | 7, 8 | bitri 275 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 10 | | df-clab 2708 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) |
| 11 | | sb6 2086 |
. . . . . . . . . . . 12
⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 12 | 10, 11 | bitri 275 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 13 | 12 | anbi2ci 625 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑦 ∧ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 14 | | df-an 396 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑦 ∧ ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ ¬ (𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 15 | 13, 14 | bitri 275 |
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ ¬ (𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 16 | 15 | con2bii 357 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ ¬ (𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) |
| 17 | 16 | albii 1819 |
. . . . . . 7
⊢
(∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ ∀𝑧 ¬ (𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) |
| 18 | | alnex 1781 |
. . . . . . 7
⊢
(∀𝑧 ¬
(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ ¬ ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) |
| 19 | 17, 18 | bitr2i 276 |
. . . . . 6
⊢ (¬
∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 20 | 9, 19 | anbi12i 628 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ ¬ ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| 21 | 6, 20 | bitr3i 277 |
. . . 4
⊢ (¬
(𝑦 ∈ {𝑥 ∣ 𝜑} → ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| 22 | 21 | exbii 1848 |
. . 3
⊢
(∃𝑦 ¬
(𝑦 ∈ {𝑥 ∣ 𝜑} → ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) ↔ ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| 23 | 4, 5, 22 | 3bitr2i 299 |
. 2
⊢ (¬
∀𝑦 ∈ {𝑥 ∣ 𝜑}∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| 24 | 1, 2, 23 | 3imtr3i 291 |
1
⊢
(∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |