Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-tgoldbachgt | Structured version Visualization version GIF version |
Description: Temporary duplicate of tgoldbachgt 32543, provided as "axiom" as long as this theorem is in the mathbox of Thierry Arnoux: Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
Ref | Expression |
---|---|
ax-tgoldbachgt.o | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
ax-tgoldbachgt.g | ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} |
Ref | Expression |
---|---|
ax-tgoldbachgt | ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vm | . . . . 5 setvar 𝑚 | |
2 | 1 | cv 1538 | . . . 4 class 𝑚 |
3 | c1 10803 | . . . . . 6 class 1 | |
4 | cc0 10802 | . . . . . 6 class 0 | |
5 | 3, 4 | cdc 12366 | . . . . 5 class ;10 |
6 | c2 11958 | . . . . . 6 class 2 | |
7 | c7 11963 | . . . . . 6 class 7 | |
8 | 6, 7 | cdc 12366 | . . . . 5 class ;27 |
9 | cexp 13710 | . . . . 5 class ↑ | |
10 | 5, 8, 9 | co 7255 | . . . 4 class (;10↑;27) |
11 | cle 10941 | . . . 4 class ≤ | |
12 | 2, 10, 11 | wbr 5070 | . . 3 wff 𝑚 ≤ (;10↑;27) |
13 | vn | . . . . . . 7 setvar 𝑛 | |
14 | 13 | cv 1538 | . . . . . 6 class 𝑛 |
15 | clt 10940 | . . . . . 6 class < | |
16 | 2, 14, 15 | wbr 5070 | . . . . 5 wff 𝑚 < 𝑛 |
17 | cG | . . . . . 6 class 𝐺 | |
18 | 14, 17 | wcel 2108 | . . . . 5 wff 𝑛 ∈ 𝐺 |
19 | 16, 18 | wi 4 | . . . 4 wff (𝑚 < 𝑛 → 𝑛 ∈ 𝐺) |
20 | cO | . . . 4 class 𝑂 | |
21 | 19, 13, 20 | wral 3063 | . . 3 wff ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺) |
22 | 12, 21 | wa 395 | . 2 wff (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) |
23 | cn 11903 | . 2 class ℕ | |
24 | 22, 1, 23 | wrex 3064 | 1 wff ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) |
Colors of variables: wff setvar class |
This axiom is referenced by: tgoldbachgtALTV 45152 |
Copyright terms: Public domain | W3C validator |