Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgtALTV Structured version   Visualization version   GIF version

Theorem tgoldbachgtALTV 44122
 Description: Variant of Thierry Arnoux's tgoldbachgt 31942 using the symbols Odd and GoldbachOdd: The ternary Goldbach conjecture is valid for large odd numbers (i.e. for all odd numbers greater than a fixed 𝑚). This is proven by Helfgott (see section 7.4 in [Helfgott] p. 70) for 𝑚 = 10^27. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 15-Jan-2022.)
Assertion
Ref Expression
tgoldbachgtALTV 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛 ∈ Odd (𝑚 < 𝑛𝑛 ∈ GoldbachOdd ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem tgoldbachgtALTV
Dummy variables 𝑧 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfodd3 43960 . 2 Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2 df-gbo 44060 . 2 GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
31, 2ax-tgoldbachgt 44121 1 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛 ∈ Odd (𝑚 < 𝑛𝑛 ∈ GoldbachOdd ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∈ wcel 2114  ∀wral 3125  ∃wrex 3126   class class class wbr 5042  (class class class)co 7133  0cc0 10515  1c1 10516   < clt 10653   ≤ cle 10654  ℕcn 11616  2c2 11671  7c7 11676  ;cdc 12077  ↑cexp 13414   Odd codd 43935   GoldbachOdd cgbo 44057 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-tgoldbachgt 44121 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-n0 11877  df-z 11961  df-dvds 15588  df-odd 43937  df-gbo 44060 This theorem is referenced by:  tgoldbach  44127
 Copyright terms: Public domain W3C validator