Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgt Structured version   Visualization version   GIF version

Theorem tgoldbachgt 34654
Description: Odd integers greater than (10↑27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgt.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgt.g 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Assertion
Ref Expression
tgoldbachgt 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Distinct variable groups:   𝑚,𝐺   𝑚,𝑂,𝑝,𝑞,𝑟,𝑧   𝑚,𝑛,𝑝,𝑞,𝑟,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑛,𝑟,𝑞,𝑝)   𝑂(𝑛)

Proof of Theorem tgoldbachgt
Dummy variables 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 10nn 12665 . . 3 10 ∈ ℕ
2 2nn0 12459 . . . 4 2 ∈ ℕ0
3 7nn0 12464 . . . 4 7 ∈ ℕ0
42, 3deccl 12664 . . 3 27 ∈ ℕ0
5 nnexpcl 14039 . . 3 ((10 ∈ ℕ ∧ 27 ∈ ℕ0) → (10↑27) ∈ ℕ)
61, 4, 5mp2an 692 . 2 (10↑27) ∈ ℕ
76nnrei 12195 . . . 4 (10↑27) ∈ ℝ
87leidi 11712 . . 3 (10↑27) ≤ (10↑27)
9 simpl 482 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝑂)
10 inss2 4201 . . . . . . . . . . . . . 14 (𝑂 ∩ ℙ) ⊆ ℙ
11 prmssnn 16646 . . . . . . . . . . . . . 14 ℙ ⊆ ℕ
1210, 11sstri 3956 . . . . . . . . . . . . 13 (𝑂 ∩ ℙ) ⊆ ℕ
1312a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑂 ∩ ℙ) ⊆ ℕ)
14 tgoldbachgt.o . . . . . . . . . . . . . . 15 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
1514eleq2i 2820 . . . . . . . . . . . . . 14 (𝑛𝑂𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
16 elrabi 3654 . . . . . . . . . . . . . 14 (𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} → 𝑛 ∈ ℤ)
1715, 16sylbi 217 . . . . . . . . . . . . 13 (𝑛𝑂𝑛 ∈ ℤ)
1817ad2antrr 726 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 ∈ ℤ)
19 3nn0 12460 . . . . . . . . . . . . 13 3 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 3 ∈ ℕ0)
21 simpr 484 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
2213, 18, 20, 21reprf 34603 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐:(0..^3)⟶(𝑂 ∩ ℙ))
23 c0ex 11168 . . . . . . . . . . . . . 14 0 ∈ V
2423tpid1 4732 . . . . . . . . . . . . 13 0 ∈ {0, 1, 2}
25 fzo0to3tp 13713 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
2624, 25eleqtrri 2827 . . . . . . . . . . . 12 0 ∈ (0..^3)
2726a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ (0..^3))
2822, 27ffvelcdmd 7057 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ (𝑂 ∩ ℙ))
2928elin2d 4168 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℙ)
30 1ex 11170 . . . . . . . . . . . . . 14 1 ∈ V
3130tpid2 4734 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
3231, 25eleqtrri 2827 . . . . . . . . . . . 12 1 ∈ (0..^3)
3332a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ (0..^3))
3422, 33ffvelcdmd 7057 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ (𝑂 ∩ ℙ))
3534elin2d 4168 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℙ)
36 2ex 12263 . . . . . . . . . . . . . 14 2 ∈ V
3736tpid3 4737 . . . . . . . . . . . . 13 2 ∈ {0, 1, 2}
3837, 25eleqtrri 2827 . . . . . . . . . . . 12 2 ∈ (0..^3)
3938a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ (0..^3))
4022, 39ffvelcdmd 7057 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ (𝑂 ∩ ℙ))
4140elin2d 4168 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℙ)
4228elin1d 4167 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ 𝑂)
4334elin1d 4167 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ 𝑂)
4440elin1d 4167 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ 𝑂)
4542, 43, 443jca 1128 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂))
4625a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0..^3) = {0, 1, 2})
4746sumeq1d 15666 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖))
4813, 18, 20, 21reprsum 34604 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = 𝑛)
49 fveq2 6858 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑐𝑖) = (𝑐‘0))
50 fveq2 6858 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑐𝑖) = (𝑐‘1))
51 fveq2 6858 . . . . . . . . . . . 12 (𝑖 = 2 → (𝑐𝑖) = (𝑐‘2))
5212, 28sselid 3944 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℕ)
5352nncnd 12202 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℂ)
5412, 34sselid 3944 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℕ)
5554nncnd 12202 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℂ)
5612, 40sselid 3944 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℕ)
5756nncnd 12202 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℂ)
5853, 55, 573jca 1128 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ ℂ ∧ (𝑐‘1) ∈ ℂ ∧ (𝑐‘2) ∈ ℂ))
5923a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ V)
6030a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ V)
6136a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ V)
6259, 60, 613jca 1128 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V))
63 0ne1 12257 . . . . . . . . . . . . 13 0 ≠ 1
6463a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 1)
65 0ne2 12388 . . . . . . . . . . . . 13 0 ≠ 2
6665a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 2)
67 1ne2 12389 . . . . . . . . . . . . 13 1 ≠ 2
6867a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ≠ 2)
6949, 50, 51, 58, 62, 64, 66, 68sumtp 15715 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7047, 48, 693eqtr3d 2772 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7145, 70jca 511 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
72 eleq1 2816 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → (𝑝𝑂 ↔ (𝑐‘0) ∈ 𝑂))
73723anbi1d 1442 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → ((𝑝𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂)))
74 oveq1 7394 . . . . . . . . . . . . 13 (𝑝 = (𝑐‘0) → (𝑝 + 𝑞) = ((𝑐‘0) + 𝑞))
7574oveq1d 7402 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → ((𝑝 + 𝑞) + 𝑟) = (((𝑐‘0) + 𝑞) + 𝑟))
7675eqeq2d 2740 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)))
7773, 76anbi12d 632 . . . . . . . . . 10 (𝑝 = (𝑐‘0) → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟))))
78 eleq1 2816 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (𝑞𝑂 ↔ (𝑐‘1) ∈ 𝑂))
79783anbi2d 1443 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂)))
80 oveq2 7395 . . . . . . . . . . . . 13 (𝑞 = (𝑐‘1) → ((𝑐‘0) + 𝑞) = ((𝑐‘0) + (𝑐‘1)))
8180oveq1d 7402 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (((𝑐‘0) + 𝑞) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + 𝑟))
8281eqeq2d 2740 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (𝑛 = (((𝑐‘0) + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)))
8379, 82anbi12d 632 . . . . . . . . . 10 (𝑞 = (𝑐‘1) → ((((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟))))
84 eleq1 2816 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (𝑟𝑂 ↔ (𝑐‘2) ∈ 𝑂))
85843anbi3d 1444 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂)))
86 oveq2 7395 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (((𝑐‘0) + (𝑐‘1)) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
8786eqeq2d 2740 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
8885, 87anbi12d 632 . . . . . . . . . 10 (𝑟 = (𝑐‘2) → ((((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))))
8977, 83, 88rspc3ev 3605 . . . . . . . . 9 ((((𝑐‘0) ∈ ℙ ∧ (𝑐‘1) ∈ ℙ ∧ (𝑐‘2) ∈ ℙ) ∧ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9029, 35, 41, 71, 89syl31anc 1375 . . . . . . . 8 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9190adantr 480 . . . . . . 7 ((((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ∧ ⊤) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
926a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℕ)
9392nnred 12201 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℝ)
9417zred 12638 . . . . . . . . . . . . . . . . 17 (𝑛𝑂𝑛 ∈ ℝ)
9594adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛 ∈ ℝ)
96 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) < 𝑛)
9793, 95, 96ltled 11322 . . . . . . . . . . . . . . 15 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ≤ 𝑛)
9814, 9, 97tgoldbachgtd 34653 . . . . . . . . . . . . . 14 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)))
99 ovex 7420 . . . . . . . . . . . . . . 15 ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V
100 hashneq0 14329 . . . . . . . . . . . . . . 15 (((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V → (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅))
10199, 100ax-mp 5 . . . . . . . . . . . . . 14 (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
10298, 101sylib 218 . . . . . . . . . . . . 13 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
103102neneqd 2930 . . . . . . . . . . . 12 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅)
104 neq0 4315 . . . . . . . . . . . 12 (¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅ ↔ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
105103, 104sylib 218 . . . . . . . . . . 11 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
106 tru 1544 . . . . . . . . . . 11
107105, 106jctil 519 . . . . . . . . . 10 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
108 19.42v 1953 . . . . . . . . . 10 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
109107, 108sylibr 234 . . . . . . . . 9 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
110 exancom 1861 . . . . . . . . 9 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
111109, 110sylib 218 . . . . . . . 8 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
112 df-rex 3054 . . . . . . . 8 (∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤ ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
113111, 112sylibr 234 . . . . . . 7 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤)
11491, 113r19.29a 3141 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
115 tgoldbachgt.g . . . . . . . . 9 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
116115eleq2i 2820 . . . . . . . 8 (𝑛𝐺𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))})
117 eqeq1 2733 . . . . . . . . . . . . 13 (𝑧 = 𝑛 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
118117anbi2d 630 . . . . . . . . . . . 12 (𝑧 = 𝑛 → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
119118rexbidv 3157 . . . . . . . . . . 11 (𝑧 = 𝑛 → (∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
120119rexbidv 3157 . . . . . . . . . 10 (𝑧 = 𝑛 → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
121120rexbidv 3157 . . . . . . . . 9 (𝑧 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
122121elrab3 3660 . . . . . . . 8 (𝑛𝑂 → (𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
123116, 122bitrid 283 . . . . . . 7 (𝑛𝑂 → (𝑛𝐺 ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
124123biimpar 477 . . . . . 6 ((𝑛𝑂 ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) → 𝑛𝐺)
1259, 114, 124syl2anc 584 . . . . 5 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝐺)
126125ex 412 . . . 4 (𝑛𝑂 → ((10↑27) < 𝑛𝑛𝐺))
127126rgen 3046 . . 3 𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)
1288, 127pm3.2i 470 . 2 ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))
129 breq1 5110 . . . 4 (𝑚 = (10↑27) → (𝑚 ≤ (10↑27) ↔ (10↑27) ≤ (10↑27)))
130 breq1 5110 . . . . . 6 (𝑚 = (10↑27) → (𝑚 < 𝑛 ↔ (10↑27) < 𝑛))
131130imbi1d 341 . . . . 5 (𝑚 = (10↑27) → ((𝑚 < 𝑛𝑛𝐺) ↔ ((10↑27) < 𝑛𝑛𝐺)))
132131ralbidv 3156 . . . 4 (𝑚 = (10↑27) → (∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺) ↔ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)))
133129, 132anbi12d 632 . . 3 (𝑚 = (10↑27) → ((𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)) ↔ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))))
134133rspcev 3588 . 2 (((10↑27) ∈ ℕ ∧ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))) → ∃𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)))
1356, 128, 134mp2an 692 1 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cin 3913  wss 3914  c0 4296  {ctp 4593   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cn 12186  2c2 12241  3c3 12242  7c7 12246  0cn0 12442  cz 12529  cdc 12649  ..^cfzo 13615  cexp 14026  chash 14295  Σcsu 15652  cdvds 16222  cprime 16641  reprcrepr 34599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-hgt749 34635  ax-ros335 34636  ax-ros336 34637
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-pmtr 19372  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466  df-atan 26777  df-cht 27007  df-vma 27008  df-chp 27009  df-dp2 32792  df-dp 32809  df-repr 34600  df-vts 34627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator