Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgt Structured version   Visualization version   GIF version

Theorem tgoldbachgt 32008
 Description: Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgt.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgt.g 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Assertion
Ref Expression
tgoldbachgt 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Distinct variable groups:   𝑚,𝐺   𝑚,𝑂,𝑝,𝑞,𝑟,𝑧   𝑚,𝑛,𝑝,𝑞,𝑟,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑛,𝑟,𝑞,𝑝)   𝑂(𝑛)

Proof of Theorem tgoldbachgt
Dummy variables 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 10nn 12102 . . 3 10 ∈ ℕ
2 2nn0 11902 . . . 4 2 ∈ ℕ0
3 7nn0 11907 . . . 4 7 ∈ ℕ0
42, 3deccl 12101 . . 3 27 ∈ ℕ0
5 nnexpcl 13438 . . 3 ((10 ∈ ℕ ∧ 27 ∈ ℕ0) → (10↑27) ∈ ℕ)
61, 4, 5mp2an 691 . 2 (10↑27) ∈ ℕ
76nnrei 11634 . . . 4 (10↑27) ∈ ℝ
87leidi 11163 . . 3 (10↑27) ≤ (10↑27)
9 simpl 486 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝑂)
10 inss2 4180 . . . . . . . . . . . . . 14 (𝑂 ∩ ℙ) ⊆ ℙ
11 prmssnn 16009 . . . . . . . . . . . . . 14 ℙ ⊆ ℕ
1210, 11sstri 3951 . . . . . . . . . . . . 13 (𝑂 ∩ ℙ) ⊆ ℕ
1312a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑂 ∩ ℙ) ⊆ ℕ)
14 tgoldbachgt.o . . . . . . . . . . . . . . 15 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
1514eleq2i 2905 . . . . . . . . . . . . . 14 (𝑛𝑂𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
16 elrabi 3650 . . . . . . . . . . . . . 14 (𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} → 𝑛 ∈ ℤ)
1715, 16sylbi 220 . . . . . . . . . . . . 13 (𝑛𝑂𝑛 ∈ ℤ)
1817ad2antrr 725 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 ∈ ℤ)
19 3nn0 11903 . . . . . . . . . . . . 13 3 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 3 ∈ ℕ0)
21 simpr 488 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
2213, 18, 20, 21reprf 31957 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐:(0..^3)⟶(𝑂 ∩ ℙ))
23 c0ex 10624 . . . . . . . . . . . . . 14 0 ∈ V
2423tpid1 4678 . . . . . . . . . . . . 13 0 ∈ {0, 1, 2}
25 fzo0to3tp 13118 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
2624, 25eleqtrri 2913 . . . . . . . . . . . 12 0 ∈ (0..^3)
2726a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ (0..^3))
2822, 27ffvelrnd 6834 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ (𝑂 ∩ ℙ))
2928elin2d 4150 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℙ)
30 1ex 10626 . . . . . . . . . . . . . 14 1 ∈ V
3130tpid2 4680 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
3231, 25eleqtrri 2913 . . . . . . . . . . . 12 1 ∈ (0..^3)
3332a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ (0..^3))
3422, 33ffvelrnd 6834 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ (𝑂 ∩ ℙ))
3534elin2d 4150 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℙ)
36 2ex 11702 . . . . . . . . . . . . . 14 2 ∈ V
3736tpid3 4683 . . . . . . . . . . . . 13 2 ∈ {0, 1, 2}
3837, 25eleqtrri 2913 . . . . . . . . . . . 12 2 ∈ (0..^3)
3938a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ (0..^3))
4022, 39ffvelrnd 6834 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ (𝑂 ∩ ℙ))
4140elin2d 4150 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℙ)
4228elin1d 4149 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ 𝑂)
4334elin1d 4149 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ 𝑂)
4440elin1d 4149 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ 𝑂)
4542, 43, 443jca 1125 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂))
4625a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0..^3) = {0, 1, 2})
4746sumeq1d 15049 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖))
4813, 18, 20, 21reprsum 31958 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = 𝑛)
49 fveq2 6652 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑐𝑖) = (𝑐‘0))
50 fveq2 6652 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑐𝑖) = (𝑐‘1))
51 fveq2 6652 . . . . . . . . . . . 12 (𝑖 = 2 → (𝑐𝑖) = (𝑐‘2))
5212, 28sseldi 3940 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℕ)
5352nncnd 11641 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℂ)
5412, 34sseldi 3940 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℕ)
5554nncnd 11641 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℂ)
5612, 40sseldi 3940 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℕ)
5756nncnd 11641 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℂ)
5853, 55, 573jca 1125 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ ℂ ∧ (𝑐‘1) ∈ ℂ ∧ (𝑐‘2) ∈ ℂ))
5923a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ V)
6030a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ V)
6136a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ V)
6259, 60, 613jca 1125 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V))
63 0ne1 11696 . . . . . . . . . . . . 13 0 ≠ 1
6463a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 1)
65 0ne2 11832 . . . . . . . . . . . . 13 0 ≠ 2
6665a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 2)
67 1ne2 11833 . . . . . . . . . . . . 13 1 ≠ 2
6867a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ≠ 2)
6949, 50, 51, 58, 62, 64, 66, 68sumtp 15095 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7047, 48, 693eqtr3d 2865 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7145, 70jca 515 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
72 eleq1 2901 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → (𝑝𝑂 ↔ (𝑐‘0) ∈ 𝑂))
73723anbi1d 1437 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → ((𝑝𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂)))
74 oveq1 7147 . . . . . . . . . . . . 13 (𝑝 = (𝑐‘0) → (𝑝 + 𝑞) = ((𝑐‘0) + 𝑞))
7574oveq1d 7155 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → ((𝑝 + 𝑞) + 𝑟) = (((𝑐‘0) + 𝑞) + 𝑟))
7675eqeq2d 2833 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)))
7773, 76anbi12d 633 . . . . . . . . . 10 (𝑝 = (𝑐‘0) → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟))))
78 eleq1 2901 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (𝑞𝑂 ↔ (𝑐‘1) ∈ 𝑂))
79783anbi2d 1438 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂)))
80 oveq2 7148 . . . . . . . . . . . . 13 (𝑞 = (𝑐‘1) → ((𝑐‘0) + 𝑞) = ((𝑐‘0) + (𝑐‘1)))
8180oveq1d 7155 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (((𝑐‘0) + 𝑞) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + 𝑟))
8281eqeq2d 2833 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (𝑛 = (((𝑐‘0) + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)))
8379, 82anbi12d 633 . . . . . . . . . 10 (𝑞 = (𝑐‘1) → ((((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟))))
84 eleq1 2901 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (𝑟𝑂 ↔ (𝑐‘2) ∈ 𝑂))
85843anbi3d 1439 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂)))
86 oveq2 7148 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (((𝑐‘0) + (𝑐‘1)) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
8786eqeq2d 2833 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
8885, 87anbi12d 633 . . . . . . . . . 10 (𝑟 = (𝑐‘2) → ((((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))))
8977, 83, 88rspc3ev 3612 . . . . . . . . 9 ((((𝑐‘0) ∈ ℙ ∧ (𝑐‘1) ∈ ℙ ∧ (𝑐‘2) ∈ ℙ) ∧ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9029, 35, 41, 71, 89syl31anc 1370 . . . . . . . 8 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9190adantr 484 . . . . . . 7 ((((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ∧ ⊤) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
926a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℕ)
9392nnred 11640 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℝ)
9417zred 12075 . . . . . . . . . . . . . . . . 17 (𝑛𝑂𝑛 ∈ ℝ)
9594adantr 484 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛 ∈ ℝ)
96 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) < 𝑛)
9793, 95, 96ltled 10777 . . . . . . . . . . . . . . 15 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ≤ 𝑛)
9814, 9, 97tgoldbachgtd 32007 . . . . . . . . . . . . . 14 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)))
99 ovex 7173 . . . . . . . . . . . . . . 15 ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V
100 hashneq0 13721 . . . . . . . . . . . . . . 15 (((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V → (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅))
10199, 100ax-mp 5 . . . . . . . . . . . . . 14 (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
10298, 101sylib 221 . . . . . . . . . . . . 13 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
103102neneqd 3016 . . . . . . . . . . . 12 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅)
104 neq0 4281 . . . . . . . . . . . 12 (¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅ ↔ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
105103, 104sylib 221 . . . . . . . . . . 11 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
106 tru 1542 . . . . . . . . . . 11
107105, 106jctil 523 . . . . . . . . . 10 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
108 19.42v 1954 . . . . . . . . . 10 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
109107, 108sylibr 237 . . . . . . . . 9 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
110 exancom 1862 . . . . . . . . 9 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
111109, 110sylib 221 . . . . . . . 8 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
112 df-rex 3136 . . . . . . . 8 (∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤ ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
113111, 112sylibr 237 . . . . . . 7 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤)
11491, 113r19.29a 3275 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
115 tgoldbachgt.g . . . . . . . . 9 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
116115eleq2i 2905 . . . . . . . 8 (𝑛𝐺𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))})
117 eqeq1 2826 . . . . . . . . . . . . 13 (𝑧 = 𝑛 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
118117anbi2d 631 . . . . . . . . . . . 12 (𝑧 = 𝑛 → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
119118rexbidv 3283 . . . . . . . . . . 11 (𝑧 = 𝑛 → (∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
120119rexbidv 3283 . . . . . . . . . 10 (𝑧 = 𝑛 → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
121120rexbidv 3283 . . . . . . . . 9 (𝑧 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
122121elrab3 3656 . . . . . . . 8 (𝑛𝑂 → (𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
123116, 122syl5bb 286 . . . . . . 7 (𝑛𝑂 → (𝑛𝐺 ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
124123biimpar 481 . . . . . 6 ((𝑛𝑂 ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) → 𝑛𝐺)
1259, 114, 124syl2anc 587 . . . . 5 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝐺)
126125ex 416 . . . 4 (𝑛𝑂 → ((10↑27) < 𝑛𝑛𝐺))
127126rgen 3140 . . 3 𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)
1288, 127pm3.2i 474 . 2 ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))
129 breq1 5045 . . . 4 (𝑚 = (10↑27) → (𝑚 ≤ (10↑27) ↔ (10↑27) ≤ (10↑27)))
130 breq1 5045 . . . . . 6 (𝑚 = (10↑27) → (𝑚 < 𝑛 ↔ (10↑27) < 𝑛))
131130imbi1d 345 . . . . 5 (𝑚 = (10↑27) → ((𝑚 < 𝑛𝑛𝐺) ↔ ((10↑27) < 𝑛𝑛𝐺)))
132131ralbidv 3187 . . . 4 (𝑚 = (10↑27) → (∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺) ↔ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)))
133129, 132anbi12d 633 . . 3 (𝑚 = (10↑27) → ((𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)) ↔ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))))
134133rspcev 3598 . 2 (((10↑27) ∈ ℕ ∧ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))) → ∃𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)))
1356, 128, 134mp2an 691 1 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ⊤wtru 1539  ∃wex 1781   ∈ wcel 2114   ≠ wne 3011  ∀wral 3130  ∃wrex 3131  {crab 3134  Vcvv 3469   ∩ cin 3907   ⊆ wss 3908  ∅c0 4265  {ctp 4543   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664   ≤ cle 10665  ℕcn 11625  2c2 11680  3c3 11681  7c7 11685  ℕ0cn0 11885  ℤcz 11969  ;cdc 12086  ..^cfzo 13028  ↑cexp 13425  ♯chash 13686  Σcsu 15033   ∥ cdvds 15598  ℙcprime 16004  reprcrepr 31953 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-reg 9044  ax-inf2 9092  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hgt749 31989  ax-ros335 31990  ax-ros336 31991 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-symdif 4193  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-r1 9181  df-rank 9182  df-dju 9318  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-prod 15251  df-ef 15412  df-e 15413  df-sin 15414  df-cos 15415  df-tan 15416  df-pi 15417  df-dvds 15599  df-gcd 15833  df-prm 16005  df-pc 16163  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-pmtr 18561  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-ovol 24066  df-vol 24067  df-mbf 24221  df-itg1 24222  df-itg2 24223  df-ibl 24224  df-itg 24225  df-0p 24272  df-limc 24467  df-dv 24468  df-ulm 24970  df-log 25146  df-cxp 25147  df-atan 25451  df-cht 25680  df-vma 25681  df-chp 25682  df-dp2 30558  df-dp 30575  df-repr 31954  df-vts 31981 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator