Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgt Structured version   Visualization version   GIF version

Theorem tgoldbachgt 31351
Description: Odd integers greater than (10↑27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgt.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgt.g 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Assertion
Ref Expression
tgoldbachgt 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Distinct variable groups:   𝑚,𝐺   𝑚,𝑂,𝑝,𝑞,𝑟,𝑧   𝑚,𝑛,𝑝,𝑞,𝑟,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑛,𝑟,𝑞,𝑝)   𝑂(𝑛)

Proof of Theorem tgoldbachgt
Dummy variables 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 10nn 11866 . . 3 10 ∈ ℕ
2 2nn0 11666 . . . 4 2 ∈ ℕ0
3 7nn0 11671 . . . 4 7 ∈ ℕ0
42, 3deccl 11865 . . 3 27 ∈ ℕ0
5 nnexpcl 13196 . . 3 ((10 ∈ ℕ ∧ 27 ∈ ℕ0) → (10↑27) ∈ ℕ)
61, 4, 5mp2an 682 . 2 (10↑27) ∈ ℕ
76nnrei 11389 . . . 4 (10↑27) ∈ ℝ
87leidi 10912 . . 3 (10↑27) ≤ (10↑27)
9 simpl 476 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝑂)
10 inss2 4054 . . . . . . . . . . . . . 14 (𝑂 ∩ ℙ) ⊆ ℙ
11 prmssnn 15805 . . . . . . . . . . . . . 14 ℙ ⊆ ℕ
1210, 11sstri 3830 . . . . . . . . . . . . 13 (𝑂 ∩ ℙ) ⊆ ℕ
1312a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑂 ∩ ℙ) ⊆ ℕ)
14 tgoldbachgt.o . . . . . . . . . . . . . . 15 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
1514eleq2i 2851 . . . . . . . . . . . . . 14 (𝑛𝑂𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
16 elrabi 3567 . . . . . . . . . . . . . 14 (𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} → 𝑛 ∈ ℤ)
1715, 16sylbi 209 . . . . . . . . . . . . 13 (𝑛𝑂𝑛 ∈ ℤ)
1817ad2antrr 716 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 ∈ ℤ)
19 3nn0 11667 . . . . . . . . . . . . 13 3 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 3 ∈ ℕ0)
21 simpr 479 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
2213, 18, 20, 21reprf 31300 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐:(0..^3)⟶(𝑂 ∩ ℙ))
23 c0ex 10372 . . . . . . . . . . . . . 14 0 ∈ V
2423tpid1 4535 . . . . . . . . . . . . 13 0 ∈ {0, 1, 2}
25 fzo0to3tp 12878 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
2624, 25eleqtrri 2858 . . . . . . . . . . . 12 0 ∈ (0..^3)
2726a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ (0..^3))
2822, 27ffvelrnd 6626 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ (𝑂 ∩ ℙ))
2928elin2d 4026 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℙ)
30 1ex 10374 . . . . . . . . . . . . . 14 1 ∈ V
3130tpid2 4537 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
3231, 25eleqtrri 2858 . . . . . . . . . . . 12 1 ∈ (0..^3)
3332a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ (0..^3))
3422, 33ffvelrnd 6626 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ (𝑂 ∩ ℙ))
3534elin2d 4026 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℙ)
36 2ex 11457 . . . . . . . . . . . . . 14 2 ∈ V
3736tpid3 4540 . . . . . . . . . . . . 13 2 ∈ {0, 1, 2}
3837, 25eleqtrri 2858 . . . . . . . . . . . 12 2 ∈ (0..^3)
3938a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ (0..^3))
4022, 39ffvelrnd 6626 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ (𝑂 ∩ ℙ))
4140elin2d 4026 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℙ)
4228elin1d 4025 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ 𝑂)
4334elin1d 4025 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ 𝑂)
4440elin1d 4025 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ 𝑂)
4542, 43, 443jca 1119 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂))
4625a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0..^3) = {0, 1, 2})
4746sumeq1d 14848 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖))
4813, 18, 20, 21reprsum 31301 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = 𝑛)
49 fveq2 6448 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑐𝑖) = (𝑐‘0))
50 fveq2 6448 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑐𝑖) = (𝑐‘1))
51 fveq2 6448 . . . . . . . . . . . 12 (𝑖 = 2 → (𝑐𝑖) = (𝑐‘2))
5212, 28sseldi 3819 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℕ)
5352nncnd 11397 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℂ)
5412, 34sseldi 3819 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℕ)
5554nncnd 11397 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℂ)
5612, 40sseldi 3819 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℕ)
5756nncnd 11397 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℂ)
5853, 55, 573jca 1119 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ ℂ ∧ (𝑐‘1) ∈ ℂ ∧ (𝑐‘2) ∈ ℂ))
5923a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ V)
6030a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ V)
6136a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ V)
6259, 60, 613jca 1119 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V))
63 0ne1 11451 . . . . . . . . . . . . 13 0 ≠ 1
6463a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 1)
65 0ne2 11594 . . . . . . . . . . . . 13 0 ≠ 2
6665a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 2)
67 1ne2 11595 . . . . . . . . . . . . 13 1 ≠ 2
6867a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ≠ 2)
6949, 50, 51, 58, 62, 64, 66, 68sumtp 14894 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7047, 48, 693eqtr3d 2822 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7145, 70jca 507 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
72 eleq1 2847 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → (𝑝𝑂 ↔ (𝑐‘0) ∈ 𝑂))
73723anbi1d 1513 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → ((𝑝𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂)))
74 oveq1 6931 . . . . . . . . . . . . 13 (𝑝 = (𝑐‘0) → (𝑝 + 𝑞) = ((𝑐‘0) + 𝑞))
7574oveq1d 6939 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → ((𝑝 + 𝑞) + 𝑟) = (((𝑐‘0) + 𝑞) + 𝑟))
7675eqeq2d 2788 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)))
7773, 76anbi12d 624 . . . . . . . . . 10 (𝑝 = (𝑐‘0) → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟))))
78 eleq1 2847 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (𝑞𝑂 ↔ (𝑐‘1) ∈ 𝑂))
79783anbi2d 1514 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂)))
80 oveq2 6932 . . . . . . . . . . . . 13 (𝑞 = (𝑐‘1) → ((𝑐‘0) + 𝑞) = ((𝑐‘0) + (𝑐‘1)))
8180oveq1d 6939 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (((𝑐‘0) + 𝑞) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + 𝑟))
8281eqeq2d 2788 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (𝑛 = (((𝑐‘0) + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)))
8379, 82anbi12d 624 . . . . . . . . . 10 (𝑞 = (𝑐‘1) → ((((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟))))
84 eleq1 2847 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (𝑟𝑂 ↔ (𝑐‘2) ∈ 𝑂))
85843anbi3d 1515 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂)))
86 oveq2 6932 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (((𝑐‘0) + (𝑐‘1)) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
8786eqeq2d 2788 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
8885, 87anbi12d 624 . . . . . . . . . 10 (𝑟 = (𝑐‘2) → ((((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))))
8977, 83, 88rspc3ev 3528 . . . . . . . . 9 ((((𝑐‘0) ∈ ℙ ∧ (𝑐‘1) ∈ ℙ ∧ (𝑐‘2) ∈ ℙ) ∧ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9029, 35, 41, 71, 89syl31anc 1441 . . . . . . . 8 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9190adantr 474 . . . . . . 7 ((((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ∧ ⊤) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
926a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℕ)
9392nnred 11396 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℝ)
9417zred 11839 . . . . . . . . . . . . . . . . 17 (𝑛𝑂𝑛 ∈ ℝ)
9594adantr 474 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛 ∈ ℝ)
96 simpr 479 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) < 𝑛)
9793, 95, 96ltled 10526 . . . . . . . . . . . . . . 15 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ≤ 𝑛)
9814, 9, 97tgoldbachgtd 31350 . . . . . . . . . . . . . 14 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)))
99 ovex 6956 . . . . . . . . . . . . . . 15 ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V
100 hashneq0 13476 . . . . . . . . . . . . . . 15 (((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V → (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅))
10199, 100ax-mp 5 . . . . . . . . . . . . . 14 (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
10298, 101sylib 210 . . . . . . . . . . . . 13 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
103102neneqd 2974 . . . . . . . . . . . 12 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅)
104 neq0 4158 . . . . . . . . . . . 12 (¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅ ↔ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
105103, 104sylib 210 . . . . . . . . . . 11 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
106 tru 1606 . . . . . . . . . . 11
107105, 106jctil 515 . . . . . . . . . 10 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
108 19.42v 1996 . . . . . . . . . 10 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
109107, 108sylibr 226 . . . . . . . . 9 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
110 exancom 1905 . . . . . . . . 9 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
111109, 110sylib 210 . . . . . . . 8 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
112 df-rex 3096 . . . . . . . 8 (∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤ ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
113111, 112sylibr 226 . . . . . . 7 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤)
11491, 113r19.29a 3264 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
115 tgoldbachgt.g . . . . . . . . 9 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
116115eleq2i 2851 . . . . . . . 8 (𝑛𝐺𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))})
117 eqeq1 2782 . . . . . . . . . . . . 13 (𝑧 = 𝑛 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
118117anbi2d 622 . . . . . . . . . . . 12 (𝑧 = 𝑛 → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
119118rexbidv 3237 . . . . . . . . . . 11 (𝑧 = 𝑛 → (∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
120119rexbidv 3237 . . . . . . . . . 10 (𝑧 = 𝑛 → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
121120rexbidv 3237 . . . . . . . . 9 (𝑧 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
122121elrab3 3574 . . . . . . . 8 (𝑛𝑂 → (𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
123116, 122syl5bb 275 . . . . . . 7 (𝑛𝑂 → (𝑛𝐺 ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
124123biimpar 471 . . . . . 6 ((𝑛𝑂 ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) → 𝑛𝐺)
1259, 114, 124syl2anc 579 . . . . 5 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝐺)
126125ex 403 . . . 4 (𝑛𝑂 → ((10↑27) < 𝑛𝑛𝐺))
127126rgen 3104 . . 3 𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)
1288, 127pm3.2i 464 . 2 ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))
129 breq1 4891 . . . 4 (𝑚 = (10↑27) → (𝑚 ≤ (10↑27) ↔ (10↑27) ≤ (10↑27)))
130 breq1 4891 . . . . . 6 (𝑚 = (10↑27) → (𝑚 < 𝑛 ↔ (10↑27) < 𝑛))
131130imbi1d 333 . . . . 5 (𝑚 = (10↑27) → ((𝑚 < 𝑛𝑛𝐺) ↔ ((10↑27) < 𝑛𝑛𝐺)))
132131ralbidv 3168 . . . 4 (𝑚 = (10↑27) → (∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺) ↔ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)))
133129, 132anbi12d 624 . . 3 (𝑚 = (10↑27) → ((𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)) ↔ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))))
134133rspcev 3511 . 2 (((10↑27) ∈ ℕ ∧ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))) → ∃𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)))
1356, 128, 134mp2an 682 1 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wtru 1602  wex 1823  wcel 2107  wne 2969  wral 3090  wrex 3091  {crab 3094  Vcvv 3398  cin 3791  wss 3792  c0 4141  {ctp 4402   class class class wbr 4888  cfv 6137  (class class class)co 6924  cc 10272  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   < clt 10413  cle 10414  cn 11379  2c2 11435  3c3 11436  7c7 11440  0cn0 11647  cz 11733  cdc 11850  ..^cfzo 12789  cexp 13183  chash 13441  Σcsu 14833  cdvds 15396  cprime 15800  reprcrepr 31296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-reg 8788  ax-inf2 8837  ax-cc 9594  ax-ac2 9622  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354  ax-hgt749 31332  ax-ros335 31333  ax-ros336 31334
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-symdif 4067  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-disj 4857  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-ofr 7177  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-omul 7850  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-r1 8926  df-rank 8927  df-card 9100  df-acn 9103  df-ac 9274  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-xnn0 11720  df-z 11734  df-dec 11851  df-uz 11998  df-q 12101  df-rp 12143  df-xneg 12262  df-xadd 12263  df-xmul 12264  df-ioo 12496  df-ioc 12497  df-ico 12498  df-icc 12499  df-fz 12649  df-fzo 12790  df-fl 12917  df-mod 12993  df-seq 13125  df-exp 13184  df-fac 13385  df-bc 13414  df-hash 13442  df-word 13606  df-concat 13667  df-s1 13692  df-s2 14005  df-s3 14006  df-shft 14220  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-limsup 14619  df-clim 14636  df-rlim 14637  df-sum 14834  df-prod 15048  df-ef 15209  df-e 15210  df-sin 15211  df-cos 15212  df-tan 15213  df-pi 15214  df-dvds 15397  df-gcd 15633  df-prm 15801  df-pc 15957  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-hom 16373  df-cco 16374  df-rest 16480  df-topn 16481  df-0g 16499  df-gsum 16500  df-topgen 16501  df-pt 16502  df-prds 16505  df-xrs 16559  df-qtop 16564  df-imas 16565  df-xps 16567  df-mre 16643  df-mrc 16644  df-acs 16646  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-mulg 17939  df-cntz 18144  df-pmtr 18256  df-cmn 18592  df-psmet 20145  df-xmet 20146  df-met 20147  df-bl 20148  df-mopn 20149  df-fbas 20150  df-fg 20151  df-cnfld 20154  df-top 21117  df-topon 21134  df-topsp 21156  df-bases 21169  df-cld 21242  df-ntr 21243  df-cls 21244  df-nei 21321  df-lp 21359  df-perf 21360  df-cn 21450  df-cnp 21451  df-haus 21538  df-cmp 21610  df-tx 21785  df-hmeo 21978  df-fil 22069  df-fm 22161  df-flim 22162  df-flf 22163  df-xms 22544  df-ms 22545  df-tms 22546  df-cncf 23100  df-ovol 23679  df-vol 23680  df-mbf 23834  df-itg1 23835  df-itg2 23836  df-ibl 23837  df-itg 23838  df-0p 23885  df-limc 24078  df-dv 24079  df-ulm 24579  df-log 24751  df-cxp 24752  df-atan 25056  df-cht 25286  df-vma 25287  df-chp 25288  df-dp2 30156  df-dp 30173  df-repr 31297  df-vts 31324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator