Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgt Structured version   Visualization version   GIF version

Theorem tgoldbachgt 34640
Description: Odd integers greater than (10↑27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgt.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgt.g 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Assertion
Ref Expression
tgoldbachgt 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Distinct variable groups:   𝑚,𝐺   𝑚,𝑂,𝑝,𝑞,𝑟,𝑧   𝑚,𝑛,𝑝,𝑞,𝑟,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑛,𝑟,𝑞,𝑝)   𝑂(𝑛)

Proof of Theorem tgoldbachgt
Dummy variables 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 10nn 12774 . . 3 10 ∈ ℕ
2 2nn0 12570 . . . 4 2 ∈ ℕ0
3 7nn0 12575 . . . 4 7 ∈ ℕ0
42, 3deccl 12773 . . 3 27 ∈ ℕ0
5 nnexpcl 14125 . . 3 ((10 ∈ ℕ ∧ 27 ∈ ℕ0) → (10↑27) ∈ ℕ)
61, 4, 5mp2an 691 . 2 (10↑27) ∈ ℕ
76nnrei 12302 . . . 4 (10↑27) ∈ ℝ
87leidi 11824 . . 3 (10↑27) ≤ (10↑27)
9 simpl 482 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝑂)
10 inss2 4259 . . . . . . . . . . . . . 14 (𝑂 ∩ ℙ) ⊆ ℙ
11 prmssnn 16723 . . . . . . . . . . . . . 14 ℙ ⊆ ℕ
1210, 11sstri 4018 . . . . . . . . . . . . 13 (𝑂 ∩ ℙ) ⊆ ℕ
1312a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑂 ∩ ℙ) ⊆ ℕ)
14 tgoldbachgt.o . . . . . . . . . . . . . . 15 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
1514eleq2i 2836 . . . . . . . . . . . . . 14 (𝑛𝑂𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
16 elrabi 3703 . . . . . . . . . . . . . 14 (𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} → 𝑛 ∈ ℤ)
1715, 16sylbi 217 . . . . . . . . . . . . 13 (𝑛𝑂𝑛 ∈ ℤ)
1817ad2antrr 725 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 ∈ ℤ)
19 3nn0 12571 . . . . . . . . . . . . 13 3 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 3 ∈ ℕ0)
21 simpr 484 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
2213, 18, 20, 21reprf 34589 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐:(0..^3)⟶(𝑂 ∩ ℙ))
23 c0ex 11284 . . . . . . . . . . . . . 14 0 ∈ V
2423tpid1 4793 . . . . . . . . . . . . 13 0 ∈ {0, 1, 2}
25 fzo0to3tp 13802 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
2624, 25eleqtrri 2843 . . . . . . . . . . . 12 0 ∈ (0..^3)
2726a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ (0..^3))
2822, 27ffvelcdmd 7119 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ (𝑂 ∩ ℙ))
2928elin2d 4228 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℙ)
30 1ex 11286 . . . . . . . . . . . . . 14 1 ∈ V
3130tpid2 4795 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
3231, 25eleqtrri 2843 . . . . . . . . . . . 12 1 ∈ (0..^3)
3332a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ (0..^3))
3422, 33ffvelcdmd 7119 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ (𝑂 ∩ ℙ))
3534elin2d 4228 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℙ)
36 2ex 12370 . . . . . . . . . . . . . 14 2 ∈ V
3736tpid3 4798 . . . . . . . . . . . . 13 2 ∈ {0, 1, 2}
3837, 25eleqtrri 2843 . . . . . . . . . . . 12 2 ∈ (0..^3)
3938a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ (0..^3))
4022, 39ffvelcdmd 7119 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ (𝑂 ∩ ℙ))
4140elin2d 4228 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℙ)
4228elin1d 4227 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ 𝑂)
4334elin1d 4227 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ 𝑂)
4440elin1d 4227 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ 𝑂)
4542, 43, 443jca 1128 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂))
4625a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0..^3) = {0, 1, 2})
4746sumeq1d 15748 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖))
4813, 18, 20, 21reprsum 34590 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = 𝑛)
49 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑐𝑖) = (𝑐‘0))
50 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑐𝑖) = (𝑐‘1))
51 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = 2 → (𝑐𝑖) = (𝑐‘2))
5212, 28sselid 4006 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℕ)
5352nncnd 12309 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℂ)
5412, 34sselid 4006 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℕ)
5554nncnd 12309 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℂ)
5612, 40sselid 4006 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℕ)
5756nncnd 12309 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℂ)
5853, 55, 573jca 1128 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ ℂ ∧ (𝑐‘1) ∈ ℂ ∧ (𝑐‘2) ∈ ℂ))
5923a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ V)
6030a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ V)
6136a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ V)
6259, 60, 613jca 1128 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V))
63 0ne1 12364 . . . . . . . . . . . . 13 0 ≠ 1
6463a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 1)
65 0ne2 12500 . . . . . . . . . . . . 13 0 ≠ 2
6665a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 2)
67 1ne2 12501 . . . . . . . . . . . . 13 1 ≠ 2
6867a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ≠ 2)
6949, 50, 51, 58, 62, 64, 66, 68sumtp 15797 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7047, 48, 693eqtr3d 2788 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7145, 70jca 511 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
72 eleq1 2832 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → (𝑝𝑂 ↔ (𝑐‘0) ∈ 𝑂))
73723anbi1d 1440 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → ((𝑝𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂)))
74 oveq1 7455 . . . . . . . . . . . . 13 (𝑝 = (𝑐‘0) → (𝑝 + 𝑞) = ((𝑐‘0) + 𝑞))
7574oveq1d 7463 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → ((𝑝 + 𝑞) + 𝑟) = (((𝑐‘0) + 𝑞) + 𝑟))
7675eqeq2d 2751 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)))
7773, 76anbi12d 631 . . . . . . . . . 10 (𝑝 = (𝑐‘0) → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟))))
78 eleq1 2832 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (𝑞𝑂 ↔ (𝑐‘1) ∈ 𝑂))
79783anbi2d 1441 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂)))
80 oveq2 7456 . . . . . . . . . . . . 13 (𝑞 = (𝑐‘1) → ((𝑐‘0) + 𝑞) = ((𝑐‘0) + (𝑐‘1)))
8180oveq1d 7463 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (((𝑐‘0) + 𝑞) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + 𝑟))
8281eqeq2d 2751 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (𝑛 = (((𝑐‘0) + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)))
8379, 82anbi12d 631 . . . . . . . . . 10 (𝑞 = (𝑐‘1) → ((((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟))))
84 eleq1 2832 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (𝑟𝑂 ↔ (𝑐‘2) ∈ 𝑂))
85843anbi3d 1442 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂)))
86 oveq2 7456 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (((𝑐‘0) + (𝑐‘1)) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
8786eqeq2d 2751 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
8885, 87anbi12d 631 . . . . . . . . . 10 (𝑟 = (𝑐‘2) → ((((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))))
8977, 83, 88rspc3ev 3652 . . . . . . . . 9 ((((𝑐‘0) ∈ ℙ ∧ (𝑐‘1) ∈ ℙ ∧ (𝑐‘2) ∈ ℙ) ∧ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9029, 35, 41, 71, 89syl31anc 1373 . . . . . . . 8 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9190adantr 480 . . . . . . 7 ((((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ∧ ⊤) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
926a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℕ)
9392nnred 12308 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℝ)
9417zred 12747 . . . . . . . . . . . . . . . . 17 (𝑛𝑂𝑛 ∈ ℝ)
9594adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛 ∈ ℝ)
96 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) < 𝑛)
9793, 95, 96ltled 11438 . . . . . . . . . . . . . . 15 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ≤ 𝑛)
9814, 9, 97tgoldbachgtd 34639 . . . . . . . . . . . . . 14 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)))
99 ovex 7481 . . . . . . . . . . . . . . 15 ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V
100 hashneq0 14413 . . . . . . . . . . . . . . 15 (((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V → (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅))
10199, 100ax-mp 5 . . . . . . . . . . . . . 14 (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
10298, 101sylib 218 . . . . . . . . . . . . 13 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
103102neneqd 2951 . . . . . . . . . . . 12 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅)
104 neq0 4375 . . . . . . . . . . . 12 (¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅ ↔ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
105103, 104sylib 218 . . . . . . . . . . 11 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
106 tru 1541 . . . . . . . . . . 11
107105, 106jctil 519 . . . . . . . . . 10 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
108 19.42v 1953 . . . . . . . . . 10 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
109107, 108sylibr 234 . . . . . . . . 9 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
110 exancom 1860 . . . . . . . . 9 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
111109, 110sylib 218 . . . . . . . 8 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
112 df-rex 3077 . . . . . . . 8 (∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤ ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
113111, 112sylibr 234 . . . . . . 7 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤)
11491, 113r19.29a 3168 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
115 tgoldbachgt.g . . . . . . . . 9 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
116115eleq2i 2836 . . . . . . . 8 (𝑛𝐺𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))})
117 eqeq1 2744 . . . . . . . . . . . . 13 (𝑧 = 𝑛 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
118117anbi2d 629 . . . . . . . . . . . 12 (𝑧 = 𝑛 → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
119118rexbidv 3185 . . . . . . . . . . 11 (𝑧 = 𝑛 → (∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
120119rexbidv 3185 . . . . . . . . . 10 (𝑧 = 𝑛 → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
121120rexbidv 3185 . . . . . . . . 9 (𝑧 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
122121elrab3 3709 . . . . . . . 8 (𝑛𝑂 → (𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
123116, 122bitrid 283 . . . . . . 7 (𝑛𝑂 → (𝑛𝐺 ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
124123biimpar 477 . . . . . 6 ((𝑛𝑂 ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) → 𝑛𝐺)
1259, 114, 124syl2anc 583 . . . . 5 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝐺)
126125ex 412 . . . 4 (𝑛𝑂 → ((10↑27) < 𝑛𝑛𝐺))
127126rgen 3069 . . 3 𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)
1288, 127pm3.2i 470 . 2 ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))
129 breq1 5169 . . . 4 (𝑚 = (10↑27) → (𝑚 ≤ (10↑27) ↔ (10↑27) ≤ (10↑27)))
130 breq1 5169 . . . . . 6 (𝑚 = (10↑27) → (𝑚 < 𝑛 ↔ (10↑27) < 𝑛))
131130imbi1d 341 . . . . 5 (𝑚 = (10↑27) → ((𝑚 < 𝑛𝑛𝐺) ↔ ((10↑27) < 𝑛𝑛𝐺)))
132131ralbidv 3184 . . . 4 (𝑚 = (10↑27) → (∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺) ↔ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)))
133129, 132anbi12d 631 . . 3 (𝑚 = (10↑27) → ((𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)) ↔ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))))
134133rspcev 3635 . 2 (((10↑27) ∈ ℕ ∧ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))) → ∃𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)))
1356, 128, 134mp2an 691 1 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wtru 1538  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352  {ctp 4652   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cn 12293  2c2 12348  3c3 12349  7c7 12353  0cn0 12553  cz 12639  cdc 12758  ..^cfzo 13711  cexp 14112  chash 14379  Σcsu 15734  cdvds 16302  cprime 16718  reprcrepr 34585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-cc 10504  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-hgt749 34621  ax-ros335 34622  ax-ros336 34623
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-r1 9833  df-rank 9834  df-dju 9970  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-prod 15952  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-pmtr 19484  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616  df-cxp 26617  df-atan 26928  df-cht 27158  df-vma 27159  df-chp 27160  df-dp2 32836  df-dp 32853  df-repr 34586  df-vts 34613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator