Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgt Structured version   Visualization version   GIF version

Theorem tgoldbachgt 31066
Description: Odd integers greater than (10↑27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgt.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgt.g 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
Assertion
Ref Expression
tgoldbachgt 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Distinct variable groups:   𝑚,𝐺   𝑚,𝑂,𝑝,𝑞,𝑟,𝑧   𝑚,𝑛,𝑝,𝑞,𝑟,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑛,𝑟,𝑞,𝑝)   𝑂(𝑛)

Proof of Theorem tgoldbachgt
Dummy variables 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 10nn 11775 . . 3 10 ∈ ℕ
2 2nn0 11576 . . . 4 2 ∈ ℕ0
3 7nn0 11581 . . . 4 7 ∈ ℕ0
42, 3deccl 11774 . . 3 27 ∈ ℕ0
5 nnexpcl 13096 . . 3 ((10 ∈ ℕ ∧ 27 ∈ ℕ0) → (10↑27) ∈ ℕ)
61, 4, 5mp2an 675 . 2 (10↑27) ∈ ℕ
76nnrei 11314 . . . 4 (10↑27) ∈ ℝ
87leidi 10847 . . 3 (10↑27) ≤ (10↑27)
9 simpl 470 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝑂)
10 inss2 4030 . . . . . . . . . . . . . 14 (𝑂 ∩ ℙ) ⊆ ℙ
11 prmssnn 15608 . . . . . . . . . . . . . 14 ℙ ⊆ ℕ
1210, 11sstri 3807 . . . . . . . . . . . . 13 (𝑂 ∩ ℙ) ⊆ ℕ
1312a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑂 ∩ ℙ) ⊆ ℕ)
14 tgoldbachgt.o . . . . . . . . . . . . . . 15 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
1514eleq2i 2877 . . . . . . . . . . . . . 14 (𝑛𝑂𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
16 elrabi 3554 . . . . . . . . . . . . . 14 (𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} → 𝑛 ∈ ℤ)
1715, 16sylbi 208 . . . . . . . . . . . . 13 (𝑛𝑂𝑛 ∈ ℤ)
1817ad2antrr 708 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 ∈ ℤ)
19 3nn0 11577 . . . . . . . . . . . . 13 3 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 3 ∈ ℕ0)
21 simpr 473 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
2213, 18, 20, 21reprf 31015 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑐:(0..^3)⟶(𝑂 ∩ ℙ))
23 c0ex 10319 . . . . . . . . . . . . . 14 0 ∈ V
2423tpid1 4494 . . . . . . . . . . . . 13 0 ∈ {0, 1, 2}
25 fzo0to3tp 12778 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
2624, 25eleqtrri 2884 . . . . . . . . . . . 12 0 ∈ (0..^3)
2726a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ (0..^3))
2822, 27ffvelrnd 6582 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ (𝑂 ∩ ℙ))
2928elin2d 4002 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℙ)
30 1ex 10321 . . . . . . . . . . . . . 14 1 ∈ V
3130tpid2 4495 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
3231, 25eleqtrri 2884 . . . . . . . . . . . 12 1 ∈ (0..^3)
3332a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ (0..^3))
3422, 33ffvelrnd 6582 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ (𝑂 ∩ ℙ))
3534elin2d 4002 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℙ)
36 2ex 11376 . . . . . . . . . . . . . 14 2 ∈ V
3736tpid3 4497 . . . . . . . . . . . . 13 2 ∈ {0, 1, 2}
3837, 25eleqtrri 2884 . . . . . . . . . . . 12 2 ∈ (0..^3)
3938a1i 11 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ (0..^3))
4022, 39ffvelrnd 6582 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ (𝑂 ∩ ℙ))
4140elin2d 4002 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℙ)
4228elin1d 4001 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ 𝑂)
4334elin1d 4001 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ 𝑂)
4440elin1d 4001 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ 𝑂)
4542, 43, 443jca 1151 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂))
4625a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0..^3) = {0, 1, 2})
4746sumeq1d 14654 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖))
4813, 18, 20, 21reprsum 31016 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ (0..^3)(𝑐𝑖) = 𝑛)
49 fveq2 6408 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑐𝑖) = (𝑐‘0))
50 fveq2 6408 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑐𝑖) = (𝑐‘1))
51 fveq2 6408 . . . . . . . . . . . 12 (𝑖 = 2 → (𝑐𝑖) = (𝑐‘2))
5212, 28sseldi 3796 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℕ)
5352nncnd 11321 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘0) ∈ ℂ)
5412, 34sseldi 3796 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℕ)
5554nncnd 11321 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘1) ∈ ℂ)
5612, 40sseldi 3796 . . . . . . . . . . . . . 14 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℕ)
5756nncnd 11321 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (𝑐‘2) ∈ ℂ)
5853, 55, 573jca 1151 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ((𝑐‘0) ∈ ℂ ∧ (𝑐‘1) ∈ ℂ ∧ (𝑐‘2) ∈ ℂ))
5923a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ∈ V)
6030a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ∈ V)
6136a1i 11 . . . . . . . . . . . . 13 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 2 ∈ V)
6259, 60, 613jca 1151 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V))
63 0ne1 11372 . . . . . . . . . . . . 13 0 ≠ 1
6463a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 1)
65 0ne2 11506 . . . . . . . . . . . . 13 0 ≠ 2
6665a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 0 ≠ 2)
67 1ne2 11507 . . . . . . . . . . . . 13 1 ≠ 2
6867a1i 11 . . . . . . . . . . . 12 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 1 ≠ 2)
6949, 50, 51, 58, 62, 64, 66, 68sumtp 14701 . . . . . . . . . . 11 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → Σ𝑖 ∈ {0, 1, 2} (𝑐𝑖) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7047, 48, 693eqtr3d 2848 . . . . . . . . . 10 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
7145, 70jca 503 . . . . . . . . 9 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
72 eleq1 2873 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → (𝑝𝑂 ↔ (𝑐‘0) ∈ 𝑂))
73723anbi1d 1557 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → ((𝑝𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂)))
74 oveq1 6881 . . . . . . . . . . . . 13 (𝑝 = (𝑐‘0) → (𝑝 + 𝑞) = ((𝑐‘0) + 𝑞))
7574oveq1d 6889 . . . . . . . . . . . 12 (𝑝 = (𝑐‘0) → ((𝑝 + 𝑞) + 𝑟) = (((𝑐‘0) + 𝑞) + 𝑟))
7675eqeq2d 2816 . . . . . . . . . . 11 (𝑝 = (𝑐‘0) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)))
7773, 76anbi12d 618 . . . . . . . . . 10 (𝑝 = (𝑐‘0) → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟))))
78 eleq1 2873 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (𝑞𝑂 ↔ (𝑐‘1) ∈ 𝑂))
79783anbi2d 1558 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂)))
80 oveq2 6882 . . . . . . . . . . . . 13 (𝑞 = (𝑐‘1) → ((𝑐‘0) + 𝑞) = ((𝑐‘0) + (𝑐‘1)))
8180oveq1d 6889 . . . . . . . . . . . 12 (𝑞 = (𝑐‘1) → (((𝑐‘0) + 𝑞) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + 𝑟))
8281eqeq2d 2816 . . . . . . . . . . 11 (𝑞 = (𝑐‘1) → (𝑛 = (((𝑐‘0) + 𝑞) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)))
8379, 82anbi12d 618 . . . . . . . . . 10 (𝑞 = (𝑐‘1) → ((((𝑐‘0) ∈ 𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + 𝑞) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟))))
84 eleq1 2873 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (𝑟𝑂 ↔ (𝑐‘2) ∈ 𝑂))
85843anbi3d 1559 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ↔ ((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂)))
86 oveq2 6882 . . . . . . . . . . . 12 (𝑟 = (𝑐‘2) → (((𝑐‘0) + (𝑐‘1)) + 𝑟) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))
8786eqeq2d 2816 . . . . . . . . . . 11 (𝑟 = (𝑐‘2) → (𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟) ↔ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))))
8885, 87anbi12d 618 . . . . . . . . . 10 (𝑟 = (𝑐‘2) → ((((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂𝑟𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + 𝑟)) ↔ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))))
8977, 83, 88rspc3ev 3519 . . . . . . . . 9 ((((𝑐‘0) ∈ ℙ ∧ (𝑐‘1) ∈ ℙ ∧ (𝑐‘2) ∈ ℙ) ∧ (((𝑐‘0) ∈ 𝑂 ∧ (𝑐‘1) ∈ 𝑂 ∧ (𝑐‘2) ∈ 𝑂) ∧ 𝑛 = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9029, 35, 41, 71, 89syl31anc 1485 . . . . . . . 8 (((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
9190adantr 468 . . . . . . 7 ((((𝑛𝑂 ∧ (10↑27) < 𝑛) ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ∧ ⊤) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
926a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℕ)
9392nnred 11320 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ∈ ℝ)
9417zred 11748 . . . . . . . . . . . . . . . . 17 (𝑛𝑂𝑛 ∈ ℝ)
9594adantr 468 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛 ∈ ℝ)
96 simpr 473 . . . . . . . . . . . . . . . 16 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) < 𝑛)
9793, 95, 96ltled 10470 . . . . . . . . . . . . . . 15 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (10↑27) ≤ 𝑛)
9814, 9, 97tgoldbachgtd 31065 . . . . . . . . . . . . . 14 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)))
99 ovex 6906 . . . . . . . . . . . . . . 15 ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V
100 hashneq0 13373 . . . . . . . . . . . . . . 15 (((𝑂 ∩ ℙ)(repr‘3)𝑛) ∈ V → (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅))
10199, 100ax-mp 5 . . . . . . . . . . . . . 14 (0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
10298, 101sylib 209 . . . . . . . . . . . . 13 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ((𝑂 ∩ ℙ)(repr‘3)𝑛) ≠ ∅)
103102neneqd 2983 . . . . . . . . . . . 12 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅)
104 neq0 4131 . . . . . . . . . . . 12 (¬ ((𝑂 ∩ ℙ)(repr‘3)𝑛) = ∅ ↔ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
105103, 104sylib 209 . . . . . . . . . . 11 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛))
106 tru 1642 . . . . . . . . . . 11
107105, 106jctil 511 . . . . . . . . . 10 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
108 19.42v 2044 . . . . . . . . . 10 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ (⊤ ∧ ∃𝑐 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
109107, 108sylibr 225 . . . . . . . . 9 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)))
110 exancom 1947 . . . . . . . . 9 (∃𝑐(⊤ ∧ 𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)) ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
111109, 110sylib 209 . . . . . . . 8 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
112 df-rex 3102 . . . . . . . 8 (∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤ ↔ ∃𝑐(𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛) ∧ ⊤))
113111, 112sylibr 225 . . . . . . 7 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑐 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑛)⊤)
11491, 113r19.29a 3266 . . . . . 6 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
115 tgoldbachgt.g . . . . . . . . 9 𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
116115eleq2i 2877 . . . . . . . 8 (𝑛𝐺𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))})
117 eqeq1 2810 . . . . . . . . . . . . 13 (𝑧 = 𝑛 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
118117anbi2d 616 . . . . . . . . . . . 12 (𝑧 = 𝑛 → (((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
119118rexbidv 3240 . . . . . . . . . . 11 (𝑧 = 𝑛 → (∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
120119rexbidv 3240 . . . . . . . . . 10 (𝑧 = 𝑛 → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
121120rexbidv 3240 . . . . . . . . 9 (𝑧 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
122121elrab3 3560 . . . . . . . 8 (𝑛𝑂 → (𝑛 ∈ {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
123116, 122syl5bb 274 . . . . . . 7 (𝑛𝑂 → (𝑛𝐺 ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
124123biimpar 465 . . . . . 6 ((𝑛𝑂 ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) → 𝑛𝐺)
1259, 114, 124syl2anc 575 . . . . 5 ((𝑛𝑂 ∧ (10↑27) < 𝑛) → 𝑛𝐺)
126125ex 399 . . . 4 (𝑛𝑂 → ((10↑27) < 𝑛𝑛𝐺))
127126rgen 3110 . . 3 𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)
1288, 127pm3.2i 458 . 2 ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))
129 breq1 4847 . . . 4 (𝑚 = (10↑27) → (𝑚 ≤ (10↑27) ↔ (10↑27) ≤ (10↑27)))
130 breq1 4847 . . . . . 6 (𝑚 = (10↑27) → (𝑚 < 𝑛 ↔ (10↑27) < 𝑛))
131130imbi1d 332 . . . . 5 (𝑚 = (10↑27) → ((𝑚 < 𝑛𝑛𝐺) ↔ ((10↑27) < 𝑛𝑛𝐺)))
132131ralbidv 3174 . . . 4 (𝑚 = (10↑27) → (∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺) ↔ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺)))
133129, 132anbi12d 618 . . 3 (𝑚 = (10↑27) → ((𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)) ↔ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))))
134133rspcev 3502 . 2 (((10↑27) ∈ ℕ ∧ ((10↑27) ≤ (10↑27) ∧ ∀𝑛𝑂 ((10↑27) < 𝑛𝑛𝐺))) → ∃𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺)))
1356, 128, 134mp2an 675 1 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wtru 1638  wex 1859  wcel 2156  wne 2978  wral 3096  wrex 3097  {crab 3100  Vcvv 3391  cin 3768  wss 3769  c0 4116  {ctp 4374   class class class wbr 4844  cfv 6101  (class class class)co 6874  cc 10219  cr 10220  0cc0 10221  1c1 10222   + caddc 10224   < clt 10359  cle 10360  cn 11305  2c2 11356  3c3 11357  7c7 11361  0cn0 11559  cz 11643  cdc 11759  ..^cfzo 12689  cexp 13083  chash 13337  Σcsu 14639  cdvds 15203  cprime 15603  reprcrepr 31011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-reg 8736  ax-inf2 8785  ax-cc 9542  ax-ac2 9570  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299  ax-addf 10300  ax-mulf 10301  ax-hgt749 31047  ax-ros335 31048  ax-ros336 31049
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-symdif 4042  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-disj 4813  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-of 7127  df-ofr 7128  df-om 7296  df-1st 7398  df-2nd 7399  df-supp 7530  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-2o 7797  df-oadd 7800  df-omul 7801  df-er 7979  df-map 8094  df-pm 8095  df-ixp 8146  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-fsupp 8515  df-fi 8556  df-sup 8587  df-inf 8588  df-oi 8654  df-r1 8874  df-rank 8875  df-card 9048  df-acn 9051  df-ac 9222  df-cda 9275  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-7 11369  df-8 11370  df-9 11371  df-n0 11560  df-xnn0 11630  df-z 11644  df-dec 11760  df-uz 11905  df-q 12008  df-rp 12047  df-xneg 12162  df-xadd 12163  df-xmul 12164  df-ioo 12397  df-ioc 12398  df-ico 12399  df-icc 12400  df-fz 12550  df-fzo 12690  df-fl 12817  df-mod 12893  df-seq 13025  df-exp 13084  df-fac 13281  df-bc 13310  df-hash 13338  df-word 13510  df-concat 13512  df-s1 13513  df-s2 13817  df-s3 13818  df-shft 14030  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-limsup 14425  df-clim 14442  df-rlim 14443  df-sum 14640  df-prod 14857  df-ef 15018  df-e 15019  df-sin 15020  df-cos 15021  df-tan 15022  df-pi 15023  df-dvds 15204  df-gcd 15436  df-prm 15604  df-pc 15759  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-ress 16076  df-plusg 16166  df-mulr 16167  df-starv 16168  df-sca 16169  df-vsca 16170  df-ip 16171  df-tset 16172  df-ple 16173  df-ds 16175  df-unif 16176  df-hom 16177  df-cco 16178  df-rest 16288  df-topn 16289  df-0g 16307  df-gsum 16308  df-topgen 16309  df-pt 16310  df-prds 16313  df-xrs 16367  df-qtop 16372  df-imas 16373  df-xps 16375  df-mre 16451  df-mrc 16452  df-acs 16454  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-submnd 17541  df-mulg 17746  df-cntz 17951  df-pmtr 18063  df-cmn 18396  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-cmp 21404  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-ovol 23445  df-vol 23446  df-mbf 23600  df-itg1 23601  df-itg2 23602  df-ibl 23603  df-itg 23604  df-0p 23651  df-limc 23844  df-dv 23845  df-ulm 24345  df-log 24517  df-cxp 24518  df-atan 24808  df-cht 25037  df-vma 25038  df-chp 25039  df-dp2 29905  df-dp 29922  df-repr 31012  df-vts 31039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator