Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax10w | Structured version Visualization version GIF version |
Description: Weak version of ax-10 2140 from which we can prove any ax-10 2140 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. It is an alias of hbn1w 2052 introduced for labeling consistency. (Contributed by NM, 9-Apr-2017.) Use hbn1w 2052 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
ax10w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ax10w | ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax10w.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | hbn1w 2052 | 1 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |