![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ex | Structured version Visualization version GIF version |
Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1829. See also the dual pair alnex 1784 / exnal 1830. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
df-ex | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wex 1782 | . 2 wff ∃𝑥𝜑 |
4 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
5 | 4, 2 | wal 1540 | . . 3 wff ∀𝑥 ¬ 𝜑 |
6 | 5 | wn 3 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
7 | 3, 6 | wb 205 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
This definition is referenced by: alnex 1784 eximal 1785 2nalexn 1831 2exnaln 1832 19.43OLD 1887 speimfw 1968 speimfwALT 1969 spimfw 1970 ax6ev 1974 cbvexvw 2041 hbe1w 2052 exexw 2055 hbe1 2140 hbe1a 2141 sbex 2278 nfex 2318 nfexd 2323 drex1v 2369 ax6 2384 drex1 2441 nfexd2 2446 eujustALT 2567 spcimegf 3581 spcegf 3583 spcimedv 3586 rexab 3691 neq0f 4342 neq0 4346 n0el 4362 abn0 4381 ax6vsep 5304 axnulALT 5305 exexneq 5435 axpownd 10596 gchi 10619 ballotlem2 33487 axextprim 34670 axrepprim 34671 axunprim 34672 axpowprim 34673 axinfprim 34675 axacprim 34676 distel 34775 bj-axtd 35472 bj-eximALT 35518 bj-modald 35550 bj-modalbe 35566 bj-hbext 35588 bj-cbvexdv 35678 bj-nfexd 36019 gneispace 42885 pm10.252 43120 hbexgVD 43667 elsetrecslem 47744 |
Copyright terms: Public domain | W3C validator |