| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ex | Structured version Visualization version GIF version | ||
| Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1827. See also the dual pair alnex 1782 / exnal 1828. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| df-ex | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wex 1780 | . 2 wff ∃𝑥𝜑 |
| 4 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
| 5 | 4, 2 | wal 1539 | . . 3 wff ∀𝑥 ¬ 𝜑 |
| 6 | 5 | wn 3 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
| 7 | 3, 6 | wb 206 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| This definition is referenced by: alnex 1782 eximal 1783 2nalexn 1829 2exnaln 1830 19.43OLD 1884 speimfw 1964 speimfwALT 1965 spimfw 1966 ax6ev 1970 cbvexvw 2038 hbe1w 2051 exexw 2054 hbe1 2146 hbe1a 2147 sbex 2283 nfex 2325 nfexd 2330 drex1v 2370 ax6 2384 drex1 2441 nfexd2 2446 eujustALT 2567 spcimegf 3504 spcegf 3542 spcimedv 3545 rexab 3649 neq0f 4295 neq0 4299 n0el 4311 abn0 4332 ax6vsep 5239 axnulALT 5240 exexneq 5375 axpownd 10492 gchi 10515 ballotlem2 34502 cbvex1v 35086 axextprim 35745 axrepprim 35746 axunprim 35747 axpowprim 35748 axinfprim 35750 axacprim 35751 distel 35845 bj-axtd 36638 bj-eximALT 36685 bj-modald 36717 bj-modalbe 36732 bj-hbext 36754 bj-cbvexdv 36844 bj-nfexd 37182 gneispace 44237 pm10.252 44464 hbexgVD 45008 elsetrecslem 49810 |
| Copyright terms: Public domain | W3C validator |