![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ex | Structured version Visualization version GIF version |
Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1824. See also the dual pair alnex 1779 / exnal 1825. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
df-ex | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wex 1777 | . 2 wff ∃𝑥𝜑 |
4 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
5 | 4, 2 | wal 1535 | . . 3 wff ∀𝑥 ¬ 𝜑 |
6 | 5 | wn 3 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
7 | 3, 6 | wb 206 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
This definition is referenced by: alnex 1779 eximal 1780 2nalexn 1826 2exnaln 1827 19.43OLD 1882 speimfw 1963 speimfwALT 1964 spimfw 1965 ax6ev 1969 cbvexvw 2036 hbe1w 2048 exexw 2051 hbe1 2143 hbe1a 2144 sbex 2285 nfex 2328 nfexd 2333 drex1v 2377 ax6 2392 drex1 2449 nfexd2 2454 eujustALT 2575 spcimegf 3563 spcegf 3605 spcimedv 3608 rexab 3716 neq0f 4371 neq0 4375 n0el 4387 abn0 4408 ax6vsep 5321 axnulALT 5322 exexneq 5454 axpownd 10670 gchi 10693 ballotlem2 34453 cbvex1v 35050 axextprim 35663 axrepprim 35664 axunprim 35665 axpowprim 35666 axinfprim 35668 axacprim 35669 distel 35767 bj-axtd 36560 bj-eximALT 36607 bj-modald 36639 bj-modalbe 36654 bj-hbext 36676 bj-cbvexdv 36766 bj-nfexd 37104 gneispace 44096 pm10.252 44330 hbexgVD 44877 elsetrecslem 48791 |
Copyright terms: Public domain | W3C validator |