| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ex | Structured version Visualization version GIF version | ||
| Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1826. See also the dual pair alnex 1781 / exnal 1827. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| df-ex | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wex 1779 | . 2 wff ∃𝑥𝜑 |
| 4 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
| 5 | 4, 2 | wal 1538 | . . 3 wff ∀𝑥 ¬ 𝜑 |
| 6 | 5 | wn 3 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
| 7 | 3, 6 | wb 206 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| This definition is referenced by: alnex 1781 eximal 1782 2nalexn 1828 2exnaln 1829 19.43OLD 1883 speimfw 1963 speimfwALT 1964 spimfw 1965 ax6ev 1969 cbvexvw 2037 hbe1w 2049 exexw 2052 hbe1 2144 hbe1a 2145 sbex 2281 nfex 2323 nfexd 2328 drex1v 2368 ax6 2382 drex1 2439 nfexd2 2444 eujustALT 2565 spcimegf 3508 spcegf 3549 spcimedv 3552 rexab 3657 neq0f 4301 neq0 4305 n0el 4317 abn0 4338 ax6vsep 5245 axnulALT 5246 exexneq 5381 axpownd 10514 gchi 10537 ballotlem2 34459 cbvex1v 35043 axextprim 35676 axrepprim 35677 axunprim 35678 axpowprim 35679 axinfprim 35681 axacprim 35682 distel 35779 bj-axtd 36570 bj-eximALT 36617 bj-modald 36649 bj-modalbe 36664 bj-hbext 36686 bj-cbvexdv 36776 bj-nfexd 37114 gneispace 44110 pm10.252 44337 hbexgVD 44882 elsetrecslem 49688 |
| Copyright terms: Public domain | W3C validator |