| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ex | Structured version Visualization version GIF version | ||
| Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1826. See also the dual pair alnex 1781 / exnal 1827. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| df-ex | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wex 1779 | . 2 wff ∃𝑥𝜑 |
| 4 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
| 5 | 4, 2 | wal 1538 | . . 3 wff ∀𝑥 ¬ 𝜑 |
| 6 | 5 | wn 3 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
| 7 | 3, 6 | wb 206 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| This definition is referenced by: alnex 1781 eximal 1782 2nalexn 1828 2exnaln 1829 19.43OLD 1883 speimfw 1963 speimfwALT 1964 spimfw 1965 ax6ev 1969 cbvexvw 2037 hbe1w 2049 exexw 2052 hbe1 2144 hbe1a 2145 sbex 2281 nfex 2323 nfexd 2328 drex1v 2368 ax6 2382 drex1 2439 nfexd2 2444 eujustALT 2565 spcimegf 3517 spcegf 3558 spcimedv 3561 rexab 3666 neq0f 4311 neq0 4315 n0el 4327 abn0 4348 ax6vsep 5258 axnulALT 5259 exexneq 5394 axpownd 10554 gchi 10577 ballotlem2 34480 cbvex1v 35064 axextprim 35688 axrepprim 35689 axunprim 35690 axpowprim 35691 axinfprim 35693 axacprim 35694 distel 35791 bj-axtd 36582 bj-eximALT 36629 bj-modald 36661 bj-modalbe 36676 bj-hbext 36698 bj-cbvexdv 36788 bj-nfexd 37126 gneispace 44123 pm10.252 44350 hbexgVD 44895 elsetrecslem 49685 |
| Copyright terms: Public domain | W3C validator |