| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ex | Structured version Visualization version GIF version | ||
| Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1826. See also the dual pair alnex 1781 / exnal 1827. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| df-ex | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wex 1779 | . 2 wff ∃𝑥𝜑 |
| 4 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
| 5 | 4, 2 | wal 1538 | . . 3 wff ∀𝑥 ¬ 𝜑 |
| 6 | 5 | wn 3 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
| 7 | 3, 6 | wb 206 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| This definition is referenced by: alnex 1781 eximal 1782 2nalexn 1828 2exnaln 1829 19.43OLD 1883 speimfw 1963 speimfwALT 1964 spimfw 1965 ax6ev 1969 cbvexvw 2036 hbe1w 2048 exexw 2051 hbe1 2143 hbe1a 2144 sbex 2281 nfex 2324 nfexd 2329 drex1v 2373 ax6 2388 drex1 2445 nfexd2 2450 eujustALT 2571 spcimegf 3530 spcegf 3571 spcimedv 3574 rexab 3678 neq0f 4323 neq0 4327 n0el 4339 abn0 4360 ax6vsep 5273 axnulALT 5274 exexneq 5409 axpownd 10613 gchi 10636 ballotlem2 34467 cbvex1v 35051 axextprim 35664 axrepprim 35665 axunprim 35666 axpowprim 35667 axinfprim 35669 axacprim 35670 distel 35767 bj-axtd 36558 bj-eximALT 36605 bj-modald 36637 bj-modalbe 36652 bj-hbext 36674 bj-cbvexdv 36764 bj-nfexd 37102 gneispace 44105 pm10.252 44333 hbexgVD 44878 elsetrecslem 49511 |
| Copyright terms: Public domain | W3C validator |