Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ex | Structured version Visualization version GIF version |
Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1828. See also the dual pair alnex 1784 / exnal 1829. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
df-ex | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wex 1782 | . 2 wff ∃𝑥𝜑 |
4 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
5 | 4, 2 | wal 1537 | . . 3 wff ∀𝑥 ¬ 𝜑 |
6 | 5 | wn 3 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
7 | 3, 6 | wb 205 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
This definition is referenced by: alnex 1784 eximal 1785 2nalexn 1830 2exnaln 1831 19.43OLD 1886 speimfw 1967 speimfwALT 1968 spimfw 1969 ax6ev 1973 cbvexvw 2040 hbe1w 2051 exexw 2054 hbe1 2139 hbe1a 2140 sbex 2278 nfex 2318 nfexd 2323 drex1v 2369 ax6 2384 drex1 2441 nfexd2 2446 eujustALT 2572 spcimegf 3529 spcegf 3531 spcimedv 3534 rexab 3631 neq0f 4275 neq0 4279 n0el 4295 abn0 4314 ax6vsep 5227 axnulALT 5228 axpownd 10357 gchi 10380 ballotlem2 32455 axextprim 33642 axrepprim 33643 axunprim 33644 axpowprim 33645 axinfprim 33647 axacprim 33648 distel 33779 bj-axtd 34776 bj-eximALT 34822 bj-modald 34854 bj-modalbe 34870 bj-hbext 34892 bj-cbvexdv 34982 bj-nfexd 35309 sn-dtru 40188 gneispace 41744 pm10.252 41979 hbexgVD 42526 elsetrecslem 46404 |
Copyright terms: Public domain | W3C validator |