Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ex | Structured version Visualization version GIF version |
Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1833. See also the dual pair alnex 1789 / exnal 1834. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
df-ex | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wex 1787 | . 2 wff ∃𝑥𝜑 |
4 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
5 | 4, 2 | wal 1541 | . . 3 wff ∀𝑥 ¬ 𝜑 |
6 | 5 | wn 3 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
7 | 3, 6 | wb 209 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
This definition is referenced by: alnex 1789 eximal 1790 2nalexn 1835 2exnaln 1836 19.43OLD 1891 speimfw 1972 speimfwALT 1973 spimfw 1974 ax6ev 1978 cbvexvw 2045 hbe1w 2056 exexw 2059 hbe1 2145 hbe1a 2146 sbex 2284 nfex 2325 nfexd 2330 drex1v 2371 ax6 2385 drex1 2442 nfexd2 2447 eujustALT 2573 spcimegf 3520 spcegf 3522 spcimedv 3525 rexab 3625 neq0f 4273 neq0 4277 n0el 4293 abn0 4312 ax6vsep 5220 axnulALT 5221 axpownd 10263 gchi 10286 ballotlem2 32330 axextprim 33517 axrepprim 33518 axunprim 33519 axpowprim 33520 axinfprim 33522 axacprim 33523 distel 33660 bj-axtd 34678 bj-eximALT 34724 bj-modald 34756 bj-modalbe 34772 bj-hbext 34794 bj-cbvexdv 34884 bj-nfexd 35212 sn-dtru 40088 gneispace 41606 pm10.252 41841 hbexgVD 42388 elsetrecslem 46263 |
Copyright terms: Public domain | W3C validator |