 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11w Structured version   Visualization version   GIF version

Theorem ax11w 2124
 Description: Weak version of ax-11 2150 from which we can prove any ax-11 2150 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. Unlike ax-11 2150, this theorem requires that 𝑥 and 𝑦 be distinct i.e. are not bundled. It is an alias of alcomiw 2088 introduced for labeling consistency. (Contributed by NM, 10-Apr-2017.) Use alcomiw 2088 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
ax11w.1 (𝑦 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
ax11w (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Distinct variable groups:   𝑦,𝑧   𝑥,𝑦   𝜑,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑧)

Proof of Theorem ax11w
StepHypRef Expression
1 ax11w.1 . 2 (𝑦 = 𝑧 → (𝜑𝜓))
21alcomiw 2088 1 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198  ∀wal 1599 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator