MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax13dgen3 Structured version   Visualization version   GIF version

Theorem ax13dgen3 2135
Description: Degenerate instance of ax-13 2372 where bundled variables 𝑦 and 𝑧 have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017.)
Assertion
Ref Expression
ax13dgen3 𝑥 = 𝑦 → (𝑦 = 𝑦 → ∀𝑥 𝑦 = 𝑦))

Proof of Theorem ax13dgen3
StepHypRef Expression
1 equid 2015 . . 3 𝑦 = 𝑦
21ax-gen 1798 . 2 𝑥 𝑦 = 𝑦
322a1i 12 1 𝑥 = 𝑦 → (𝑦 = 𝑦 → ∀𝑥 𝑦 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator