Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version |
Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
equid | ⊢ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v1 2014 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
3 | ax6ev 1974 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
4 | 2, 3 | exlimiiv 1935 | 1 ⊢ 𝑥 = 𝑥 |
Colors of variables: wff setvar class |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: nfequid 2017 equcomiv 2018 equcomi 2021 stdpc6 2032 equsb1v 2105 ax6dgen 2126 ax13dgen1 2135 ax13dgen3 2137 sbid 2251 exists1 2662 vjust 3423 dfv2 3425 vexOLD 3427 reu6 3656 sbc8g 3719 dfnul2 4256 dfnul2OLD 4258 dfnul3OLD 4259 dfnul4OLD 4260 ab0orv 4309 dfid3 5483 isso2i 5529 relop 5748 domepOLD 5822 iotanul 6396 f1eqcocnv 7153 f1eqcocnvOLD 7154 fsplitOLD 7929 mpoxopoveq 8006 frecseq123 8069 dfac2b 9817 konigthlem 10255 hash2prde 14112 hashge2el2difr 14123 pospo 17978 mamulid 21498 mdetdiagid 21657 alexsubALTlem3 23108 trust 23289 isppw2 26169 xmstrkgc 27156 avril1 28728 sa-abvi 30706 ttrclselem2 33712 poxp2 33717 wlimeq12 33740 bj-ssbid2 34770 bj-ssbid1 34772 mptsnunlem 35436 ax12eq 36882 elnev 41945 ipo0 41956 ifr0 41957 tratrb 42045 tratrbVD 42370 unirnmapsn 42643 hspmbl 44057 |
Copyright terms: Public domain | W3C validator |