| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version | ||
| Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| equid | ⊢ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7v1 2010 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
| 3 | ax6ev 1969 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 4 | 2, 3 | exlimiiv 1931 | 1 ⊢ 𝑥 = 𝑥 |
| Colors of variables: wff setvar class |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nfequid 2013 equcomiv 2014 equcomi 2017 stdpc6 2028 equsb1v 2106 ax6dgen 2129 ax13dgen1 2138 ax13dgen3 2140 sbid 2256 exists1 2654 vjust 3448 dfv2 3450 reu6 3697 sbc8g 3761 dfnul2 4299 ab0orv 4346 dfid3 5536 isso2i 5583 relop 5814 iotanul 6489 f1eqcocnv 7276 poxp2 8122 mpoxopoveq 8198 frecseq123 8261 ttrclselem2 9679 dfac2b 10084 konigthlem 10521 hash2prde 14435 hashge2el2difr 14446 pospo 18304 mamulid 22328 mdetdiagid 22487 alexsubALTlem3 23936 trust 24117 isppw2 27025 xmstrkgc 28813 avril1 30392 sa-abvi 32372 wlimeq12 35807 bj-ssbid2 36650 bj-ssbid1 36652 mptsnunlem 37326 ax12eq 38934 elnev 44427 ipo0 44438 ifr0 44439 tratrb 44526 tratrbVD 44850 unirnmapsn 45208 hspmbl 46627 et-equeucl 46870 resipos 48963 |
| Copyright terms: Public domain | W3C validator |