![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version |
Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
equid | ⊢ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v1 2114 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
3 | ax6ev 2077 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
4 | 2, 3 | exlimiiv 2030 | 1 ⊢ 𝑥 = 𝑥 |
Colors of variables: wff setvar class |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 |
This theorem depends on definitions: df-bi 199 df-ex 1879 |
This theorem is referenced by: nfequid 2117 equcomiv 2118 equcomi 2121 stdpc6 2132 ax6dgen 2179 ax13dgen1 2188 ax13dgen3 2190 sbid 2289 exists1 2743 vjust 3415 vex 3417 reu6 3620 nfccdeq 3660 sbc8g 3670 dfnul3 4147 dfid3 5251 isso2i 5295 relop 5505 iotanul 6101 f1eqcocnv 6811 fsplit 7546 mpt2xopoveq 7610 ruv 8776 dfac2b 9266 dfac2OLD 9268 konigthlem 9705 hash2prde 13541 hashge2el2difr 13552 pospo 17326 mamulid 20614 mdetdiagid 20774 alexsubALTlem3 22223 trust 22403 isppw2 25254 xmstrkgc 26185 avril1 27866 sa-abvi 29846 domep 32225 wlimeq12 32292 frecseq123 32305 bj-ssbid2 33174 bj-ssbid1 33176 bj-vjust 33304 mptsnunlem 33724 ax12eq 35009 elnev 39471 ipo0 39484 ifr0 39485 tratrb 39573 tratrbVD 39908 unirnmapsn 40205 hspmbl 41630 |
Copyright terms: Public domain | W3C validator |