| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version | ||
| Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| equid | ⊢ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7v1 2010 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
| 3 | ax6ev 1969 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 4 | 2, 3 | exlimiiv 1931 | 1 ⊢ 𝑥 = 𝑥 |
| Colors of variables: wff setvar class |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nfequid 2013 equcomiv 2014 equcomi 2017 stdpc6 2028 equsb1v 2106 ax6dgen 2129 ax13dgen1 2138 ax13dgen3 2140 sbid 2256 exists1 2654 vjust 3445 dfv2 3447 reu6 3694 sbc8g 3758 dfnul2 4295 ab0orv 4342 dfid3 5529 isso2i 5576 relop 5804 iotanul 6477 f1eqcocnv 7258 poxp2 8099 mpoxopoveq 8175 frecseq123 8238 ttrclselem2 9655 dfac2b 10060 konigthlem 10497 hash2prde 14411 hashge2el2difr 14422 pospo 18280 mamulid 22304 mdetdiagid 22463 alexsubALTlem3 23912 trust 24093 isppw2 27001 xmstrkgc 28789 avril1 30365 sa-abvi 32345 wlimeq12 35780 bj-ssbid2 36623 bj-ssbid1 36625 mptsnunlem 37299 ax12eq 38907 elnev 44400 ipo0 44411 ifr0 44412 tratrb 44499 tratrbVD 44823 unirnmapsn 45181 hspmbl 46600 et-equeucl 46843 resipos 48936 |
| Copyright terms: Public domain | W3C validator |