![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version |
Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
equid | ⊢ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v1 2005 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
3 | ax6ev 1965 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
4 | 2, 3 | exlimiiv 1927 | 1 ⊢ 𝑥 = 𝑥 |
Colors of variables: wff setvar class |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 |
This theorem depends on definitions: df-bi 207 df-ex 1775 |
This theorem is referenced by: nfequid 2008 equcomiv 2009 equcomi 2012 stdpc6 2023 equsb1v 2101 ax6dgen 2124 ax13dgen1 2133 ax13dgen3 2135 sbid 2251 exists1 2657 vjust 3478 dfv2 3480 reu6 3735 sbc8g 3799 dfnul2 4342 ab0orv 4389 dfid3 5580 isso2i 5628 relop 5859 iotanul 6537 f1eqcocnv 7315 poxp2 8162 mpoxopoveq 8238 frecseq123 8301 ttrclselem2 9758 dfac2b 10163 konigthlem 10600 hash2prde 14496 hashge2el2difr 14507 pospo 18392 mamulid 22445 mdetdiagid 22604 alexsubALTlem3 24055 trust 24236 isppw2 27155 xmstrkgc 28897 avril1 30474 sa-abvi 32454 wlimeq12 35761 bj-ssbid2 36605 bj-ssbid1 36607 mptsnunlem 37281 ax12eq 38884 elnev 44400 ipo0 44411 ifr0 44412 tratrb 44500 tratrbVD 44825 unirnmapsn 45114 hspmbl 46542 et-equeucl 46785 |
Copyright terms: Public domain | W3C validator |