| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version | ||
| Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| equid | ⊢ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7v1 2011 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
| 3 | ax6ev 1970 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 4 | 2, 3 | exlimiiv 1932 | 1 ⊢ 𝑥 = 𝑥 |
| Colors of variables: wff setvar class |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: nfequid 2014 equcomiv 2015 equcomi 2018 stdpc6 2029 equsb1v 2108 ax6dgen 2131 ax13dgen1 2140 ax13dgen3 2142 sbid 2258 exists1 2656 vjust 3437 dfv2 3439 reu6 3680 sbc8g 3744 dfnul2 4283 dfid3 5512 isso2i 5559 relop 5789 iotanul 6461 f1eqcocnv 7235 poxp2 8073 mpoxopoveq 8149 frecseq123 8212 ttrclselem2 9616 dfac2b 10022 konigthlem 10459 hash2prde 14377 hashge2el2difr 14388 pospo 18249 mamulid 22356 mdetdiagid 22515 alexsubALTlem3 23964 trust 24144 isppw2 27052 xmstrkgc 28864 avril1 30443 sa-abvi 32423 wlimeq12 35861 bj-ssbid2 36704 bj-ssbid1 36706 mptsnunlem 37380 ax12eq 38988 elnev 44478 ipo0 44489 ifr0 44490 tratrb 44577 tratrbVD 44901 unirnmapsn 45259 hspmbl 46675 et-equeucl 46918 resipos 49014 |
| Copyright terms: Public domain | W3C validator |