Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version |
Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
equid | ⊢ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v1 2013 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
3 | ax6ev 1973 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
4 | 2, 3 | exlimiiv 1934 | 1 ⊢ 𝑥 = 𝑥 |
Colors of variables: wff setvar class |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: nfequid 2016 equcomiv 2017 equcomi 2020 stdpc6 2031 equsb1v 2103 ax6dgen 2124 ax13dgen1 2133 ax13dgen3 2135 sbid 2248 exists1 2662 vjust 3433 dfv2 3435 vexOLD 3437 reu6 3661 sbc8g 3724 dfnul2 4259 dfnul2OLD 4261 dfnul3OLD 4262 dfnul4OLD 4263 ab0orv 4312 dfid3 5492 isso2i 5538 relop 5759 domepOLD 5833 iotanul 6411 f1eqcocnv 7173 f1eqcocnvOLD 7174 fsplitOLD 7958 mpoxopoveq 8035 frecseq123 8098 ttrclselem2 9484 dfac2b 9886 konigthlem 10324 hash2prde 14184 hashge2el2difr 14195 pospo 18063 mamulid 21590 mdetdiagid 21749 alexsubALTlem3 23200 trust 23381 isppw2 26264 xmstrkgc 27253 avril1 28827 sa-abvi 30805 poxp2 33790 wlimeq12 33813 bj-ssbid2 34843 bj-ssbid1 34845 mptsnunlem 35509 ax12eq 36955 elnev 42056 ipo0 42067 ifr0 42068 tratrb 42156 tratrbVD 42481 unirnmapsn 42754 hspmbl 44167 |
Copyright terms: Public domain | W3C validator |