| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version | ||
| Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| equid | ⊢ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7v1 2010 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
| 3 | ax6ev 1969 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 4 | 2, 3 | exlimiiv 1931 | 1 ⊢ 𝑥 = 𝑥 |
| Colors of variables: wff setvar class |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nfequid 2013 equcomiv 2014 equcomi 2017 stdpc6 2028 equsb1v 2106 ax6dgen 2129 ax13dgen1 2138 ax13dgen3 2140 sbid 2256 exists1 2654 vjust 3445 dfv2 3447 reu6 3694 sbc8g 3758 dfnul2 4295 ab0orv 4342 dfid3 5529 isso2i 5576 relop 5804 iotanul 6477 f1eqcocnv 7258 poxp2 8099 mpoxopoveq 8175 frecseq123 8238 ttrclselem2 9655 dfac2b 10060 konigthlem 10497 hash2prde 14411 hashge2el2difr 14422 pospo 18284 mamulid 22361 mdetdiagid 22520 alexsubALTlem3 23969 trust 24150 isppw2 27058 xmstrkgc 28866 avril1 30442 sa-abvi 32422 wlimeq12 35800 bj-ssbid2 36643 bj-ssbid1 36645 mptsnunlem 37319 ax12eq 38927 elnev 44420 ipo0 44431 ifr0 44432 tratrb 44519 tratrbVD 44843 unirnmapsn 45201 hspmbl 46620 et-equeucl 46863 resipos 48956 |
| Copyright terms: Public domain | W3C validator |