![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version |
Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
equid | ⊢ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v1 2009 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
3 | ax6ev 1969 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
4 | 2, 3 | exlimiiv 1930 | 1 ⊢ 𝑥 = 𝑥 |
Colors of variables: wff setvar class |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: nfequid 2012 equcomiv 2013 equcomi 2016 stdpc6 2027 equsb1v 2105 ax6dgen 2128 ax13dgen1 2137 ax13dgen3 2139 sbid 2256 exists1 2664 vjust 3489 dfv2 3491 reu6 3748 sbc8g 3812 dfnul2 4355 dfnul2OLD 4357 dfnul3OLD 4358 dfnul4OLD 4359 ab0orv 4406 dfid3 5596 isso2i 5642 relop 5870 iotanul 6546 f1eqcocnv 7332 poxp2 8178 mpoxopoveq 8254 frecseq123 8317 ttrclselem2 9789 dfac2b 10194 konigthlem 10631 hash2prde 14513 hashge2el2difr 14524 pospo 18409 mamulid 22460 mdetdiagid 22619 alexsubALTlem3 24070 trust 24251 isppw2 27168 xmstrkgc 28910 avril1 30487 sa-abvi 32467 wlimeq12 35775 bj-ssbid2 36620 bj-ssbid1 36622 mptsnunlem 37296 ax12eq 38889 elnev 44402 ipo0 44413 ifr0 44414 tratrb 44502 tratrbVD 44827 unirnmapsn 45110 hspmbl 46539 et-equeucl 46782 |
Copyright terms: Public domain | W3C validator |