| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version | ||
| Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| equid | ⊢ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7v1 2008 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
| 3 | ax6ev 1968 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 4 | 2, 3 | exlimiiv 1930 | 1 ⊢ 𝑥 = 𝑥 |
| Colors of variables: wff setvar class |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: nfequid 2011 equcomiv 2012 equcomi 2015 stdpc6 2026 equsb1v 2104 ax6dgen 2127 ax13dgen1 2136 ax13dgen3 2138 sbid 2254 exists1 2659 vjust 3458 dfv2 3460 reu6 3707 sbc8g 3771 dfnul2 4309 ab0orv 4356 dfid3 5549 isso2i 5596 relop 5828 iotanul 6506 f1eqcocnv 7290 poxp2 8137 mpoxopoveq 8213 frecseq123 8276 ttrclselem2 9733 dfac2b 10138 konigthlem 10575 hash2prde 14478 hashge2el2difr 14489 pospo 18342 mamulid 22366 mdetdiagid 22525 alexsubALTlem3 23974 trust 24155 isppw2 27063 xmstrkgc 28799 avril1 30378 sa-abvi 32358 wlimeq12 35766 bj-ssbid2 36609 bj-ssbid1 36611 mptsnunlem 37285 ax12eq 38888 elnev 44395 ipo0 44406 ifr0 44407 tratrb 44494 tratrbVD 44819 unirnmapsn 45172 hspmbl 46594 et-equeucl 46837 resipos 48843 |
| Copyright terms: Public domain | W3C validator |