| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version | ||
| Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| equid | ⊢ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7v1 2010 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
| 3 | ax6ev 1969 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 4 | 2, 3 | exlimiiv 1931 | 1 ⊢ 𝑥 = 𝑥 |
| Colors of variables: wff setvar class |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nfequid 2013 equcomiv 2014 equcomi 2017 stdpc6 2028 equsb1v 2106 ax6dgen 2129 ax13dgen1 2138 ax13dgen3 2140 sbid 2256 exists1 2655 vjust 3451 dfv2 3453 reu6 3699 sbc8g 3763 dfnul2 4301 ab0orv 4348 dfid3 5538 isso2i 5585 relop 5816 iotanul 6491 f1eqcocnv 7278 poxp2 8124 mpoxopoveq 8200 frecseq123 8263 ttrclselem2 9685 dfac2b 10090 konigthlem 10527 hash2prde 14441 hashge2el2difr 14452 pospo 18310 mamulid 22334 mdetdiagid 22493 alexsubALTlem3 23942 trust 24123 isppw2 27031 xmstrkgc 28819 avril1 30398 sa-abvi 32378 wlimeq12 35802 bj-ssbid2 36645 bj-ssbid1 36647 mptsnunlem 37321 ax12eq 38929 elnev 44420 ipo0 44431 ifr0 44432 tratrb 44519 tratrbVD 44843 unirnmapsn 45201 hspmbl 46620 et-equeucl 46863 resipos 48953 |
| Copyright terms: Public domain | W3C validator |