| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version | ||
| Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| equid | ⊢ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7v1 2010 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
| 3 | ax6ev 1969 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 4 | 2, 3 | exlimiiv 1931 | 1 ⊢ 𝑥 = 𝑥 |
| Colors of variables: wff setvar class |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nfequid 2013 equcomiv 2014 equcomi 2017 stdpc6 2028 equsb1v 2106 ax6dgen 2129 ax13dgen1 2138 ax13dgen3 2140 sbid 2256 exists1 2654 vjust 3437 dfv2 3439 reu6 3686 sbc8g 3750 dfnul2 4287 ab0orv 4334 dfid3 5517 isso2i 5564 relop 5793 iotanul 6462 f1eqcocnv 7238 poxp2 8076 mpoxopoveq 8152 frecseq123 8215 ttrclselem2 9622 dfac2b 10025 konigthlem 10462 hash2prde 14377 hashge2el2difr 14388 pospo 18249 mamulid 22326 mdetdiagid 22485 alexsubALTlem3 23934 trust 24115 isppw2 27023 xmstrkgc 28831 avril1 30407 sa-abvi 32387 wlimeq12 35793 bj-ssbid2 36636 bj-ssbid1 36638 mptsnunlem 37312 ax12eq 38920 elnev 44411 ipo0 44422 ifr0 44423 tratrb 44510 tratrbVD 44834 unirnmapsn 45192 hspmbl 46610 et-equeucl 46853 resipos 48959 |
| Copyright terms: Public domain | W3C validator |