![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equid | Structured version Visualization version GIF version |
Description: Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
equid | ⊢ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v1 2014 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
2 | 1 | pm2.43i 52 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
3 | ax6ev 1974 | . 2 ⊢ ∃𝑦 𝑦 = 𝑥 | |
4 | 2, 3 | exlimiiv 1935 | 1 ⊢ 𝑥 = 𝑥 |
Colors of variables: wff setvar class |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: nfequid 2017 equcomiv 2018 equcomi 2021 stdpc6 2032 equsb1v 2104 ax6dgen 2125 ax13dgen1 2134 ax13dgen3 2136 sbid 2248 exists1 2657 vjust 3476 dfv2 3478 vexOLD 3480 reu6 3723 sbc8g 3786 dfnul2 4326 dfnul2OLD 4328 dfnul3OLD 4329 dfnul4OLD 4330 ab0orv 4379 dfid3 5578 isso2i 5624 relop 5851 iotanul 6522 f1eqcocnv 7299 f1eqcocnvOLD 7300 poxp2 8129 mpoxopoveq 8204 frecseq123 8267 ttrclselem2 9721 dfac2b 10125 konigthlem 10563 hash2prde 14431 hashge2el2difr 14442 pospo 18298 mamulid 21943 mdetdiagid 22102 alexsubALTlem3 23553 trust 23734 isppw2 26619 xmstrkgc 28143 avril1 29716 sa-abvi 31696 wlimeq12 34791 bj-ssbid2 35539 bj-ssbid1 35541 mptsnunlem 36219 ax12eq 37811 elnev 43197 ipo0 43208 ifr0 43209 tratrb 43297 tratrbVD 43622 unirnmapsn 43913 hspmbl 45345 et-equeucl 45588 |
Copyright terms: Public domain | W3C validator |