| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version | ||
| Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 2a1i.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| 2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 |
| This theorem is referenced by: ax13dgen3 2138 sbcrext 3846 mptexgf 7211 oaordi 8553 nnaordi 8625 mapsnend 9045 cantnfval2 9676 infxpenc2lem1 10026 ackbij1lem16 10241 sornom 10284 fin23lem36 10355 isf32lem1 10360 isf32lem2 10361 zornn0g 10512 canthwe 10658 indpi 10914 seqid2 14056 pfxccatin12lem3 14739 fsum2d 15776 fsumabs 15806 fsumiun 15826 fprod2d 15986 prmodvdslcmf 17054 prmlem1a 17113 gicsubgen 19249 dmatelnd 22421 dis2ndc 23385 1stcelcls 23386 ptcmpfi 23738 caubl 25247 caublcls 25248 volsuplem 25495 cpnord 25876 fsumvma 27162 gausslemma2dlem4 27318 pntpbnd1 27535 3pthdlem1 30079 frgr3vlem1 30188 3vfriswmgrlem 30192 fzto1st 33051 psgnfzto1st 33053 wl-equsal1t 37489 ax12f 38887 incssnn0 42666 lzenom 42725 omabs2 43288 clsk1independent 44002 iidn3 44459 truniALT 44499 onfrALTlem2 44504 ee220 44596 dvmptfprodlem 45909 dvnprodlem1 45911 fourierdlem89 46160 fourierdlem91 46162 sge0reuz 46412 hoi2toco 46572 linds0 48335 |
| Copyright terms: Public domain | W3C validator |