| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version | ||
| Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 2a1i.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| 2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 |
| This theorem is referenced by: ax13dgen3 2142 sbcrext 3824 mptexgf 7156 oaordi 8461 nnaordi 8533 mapsnend 8958 cantnfval2 9559 infxpenc2lem1 9907 ackbij1lem16 10122 sornom 10165 fin23lem36 10236 isf32lem1 10241 isf32lem2 10242 zornn0g 10393 canthwe 10539 indpi 10795 seqid2 13952 pfxccatin12lem3 14636 fsum2d 15675 fsumabs 15705 fsumiun 15725 fprod2d 15885 prmodvdslcmf 16956 prmlem1a 17015 gicsubgen 19189 dmatelnd 22409 dis2ndc 23373 1stcelcls 23374 ptcmpfi 23726 caubl 25233 caublcls 25234 volsuplem 25481 cpnord 25862 fsumvma 27149 gausslemma2dlem4 27305 pntpbnd1 27522 3pthdlem1 30139 frgr3vlem1 30248 3vfriswmgrlem 30252 fzto1st 33067 psgnfzto1st 33069 wl-equsal1t 37575 ax12f 38978 incssnn0 42743 lzenom 42802 omabs2 43364 clsk1independent 44078 iidn3 44533 truniALT 44573 onfrALTlem2 44578 ee220 44670 dvmptfprodlem 45981 dvnprodlem1 45983 fourierdlem89 46232 fourierdlem91 46234 sge0reuz 46484 hoi2toco 46644 gpgedg2iv 48097 linds0 48496 |
| Copyright terms: Public domain | W3C validator |