| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version | ||
| Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 2a1i.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| 2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 |
| This theorem is referenced by: ax13dgen3 2140 sbcrext 3836 mptexgf 7196 oaordi 8510 nnaordi 8582 mapsnend 9007 cantnfval2 9622 infxpenc2lem1 9972 ackbij1lem16 10187 sornom 10230 fin23lem36 10301 isf32lem1 10306 isf32lem2 10307 zornn0g 10458 canthwe 10604 indpi 10860 seqid2 14013 pfxccatin12lem3 14697 fsum2d 15737 fsumabs 15767 fsumiun 15787 fprod2d 15947 prmodvdslcmf 17018 prmlem1a 17077 gicsubgen 19211 dmatelnd 22383 dis2ndc 23347 1stcelcls 23348 ptcmpfi 23700 caubl 25208 caublcls 25209 volsuplem 25456 cpnord 25837 fsumvma 27124 gausslemma2dlem4 27280 pntpbnd1 27497 3pthdlem1 30093 frgr3vlem1 30202 3vfriswmgrlem 30206 fzto1st 33060 psgnfzto1st 33062 wl-equsal1t 37530 ax12f 38933 incssnn0 42699 lzenom 42758 omabs2 43321 clsk1independent 44035 iidn3 44491 truniALT 44531 onfrALTlem2 44536 ee220 44628 dvmptfprodlem 45942 dvnprodlem1 45944 fourierdlem89 46193 fourierdlem91 46195 sge0reuz 46445 hoi2toco 46605 gpgedg2iv 48058 linds0 48454 |
| Copyright terms: Public domain | W3C validator |