![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version |
Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
2a1i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 |
This theorem is referenced by: ax13dgen3 2136 sbcrext 3868 mptexgf 7224 oaordi 8546 nnaordi 8618 mapsnend 9036 cantnfval2 9664 infxpenc2lem1 10014 ackbij1lem16 10230 sornom 10272 fin23lem36 10343 isf32lem1 10348 isf32lem2 10349 zornn0g 10500 canthwe 10646 indpi 10902 seqid2 14014 pfxccatin12lem3 14682 fsum2d 15717 fsumabs 15747 fsumiun 15767 fprod2d 15925 prmodvdslcmf 16980 prmlem1a 17040 gicsubgen 19152 dmatelnd 21998 dis2ndc 22964 1stcelcls 22965 ptcmpfi 23317 caubl 24825 caublcls 24826 volsuplem 25072 cpnord 25452 fsumvma 26716 gausslemma2dlem4 26872 pntpbnd1 27089 3pthdlem1 29417 frgr3vlem1 29526 3vfriswmgrlem 29530 fzto1st 32262 psgnfzto1st 32264 wl-equsal1t 36410 ax12f 37810 incssnn0 41449 lzenom 41508 omabs2 42082 clsk1independent 42797 iidn3 43262 truniALT 43302 onfrALTlem2 43307 ee220 43399 dvmptfprodlem 44660 fourierdlem89 44911 fourierdlem91 44913 sge0reuz 45163 hoi2toco 45323 linds0 47146 |
Copyright terms: Public domain | W3C validator |