| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version | ||
| Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 2a1i.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| 2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 |
| This theorem is referenced by: ax13dgen3 2140 sbcrext 3839 mptexgf 7199 oaordi 8513 nnaordi 8585 mapsnend 9010 cantnfval2 9629 infxpenc2lem1 9979 ackbij1lem16 10194 sornom 10237 fin23lem36 10308 isf32lem1 10313 isf32lem2 10314 zornn0g 10465 canthwe 10611 indpi 10867 seqid2 14020 pfxccatin12lem3 14704 fsum2d 15744 fsumabs 15774 fsumiun 15794 fprod2d 15954 prmodvdslcmf 17025 prmlem1a 17084 gicsubgen 19218 dmatelnd 22390 dis2ndc 23354 1stcelcls 23355 ptcmpfi 23707 caubl 25215 caublcls 25216 volsuplem 25463 cpnord 25844 fsumvma 27131 gausslemma2dlem4 27287 pntpbnd1 27504 3pthdlem1 30100 frgr3vlem1 30209 3vfriswmgrlem 30213 fzto1st 33067 psgnfzto1st 33069 wl-equsal1t 37537 ax12f 38940 incssnn0 42706 lzenom 42765 omabs2 43328 clsk1independent 44042 iidn3 44498 truniALT 44538 onfrALTlem2 44543 ee220 44635 dvmptfprodlem 45949 dvnprodlem1 45951 fourierdlem89 46200 fourierdlem91 46202 sge0reuz 46452 hoi2toco 46612 gpgedg2iv 48062 linds0 48458 |
| Copyright terms: Public domain | W3C validator |