![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version |
Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
2a1i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 |
This theorem is referenced by: ax13dgen3 2139 sbcrext 3895 mptexgf 7259 oaordi 8602 nnaordi 8674 mapsnend 9101 cantnfval2 9738 infxpenc2lem1 10088 ackbij1lem16 10303 sornom 10346 fin23lem36 10417 isf32lem1 10422 isf32lem2 10423 zornn0g 10574 canthwe 10720 indpi 10976 seqid2 14099 pfxccatin12lem3 14780 fsum2d 15819 fsumabs 15849 fsumiun 15869 fprod2d 16029 prmodvdslcmf 17094 prmlem1a 17154 gicsubgen 19319 dmatelnd 22523 dis2ndc 23489 1stcelcls 23490 ptcmpfi 23842 caubl 25361 caublcls 25362 volsuplem 25609 cpnord 25991 fsumvma 27275 gausslemma2dlem4 27431 pntpbnd1 27648 3pthdlem1 30196 frgr3vlem1 30305 3vfriswmgrlem 30309 fzto1st 33096 psgnfzto1st 33098 wl-equsal1t 37496 ax12f 38896 incssnn0 42667 lzenom 42726 omabs2 43294 clsk1independent 44008 iidn3 44472 truniALT 44512 onfrALTlem2 44517 ee220 44609 dvmptfprodlem 45865 fourierdlem89 46116 fourierdlem91 46118 sge0reuz 46368 hoi2toco 46528 linds0 48194 |
Copyright terms: Public domain | W3C validator |