| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version | ||
| Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 2a1i.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| 2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 |
| This theorem is referenced by: ax13dgen3 2140 sbcrext 3827 mptexgf 7162 oaordi 8471 nnaordi 8543 mapsnend 8968 cantnfval2 9584 infxpenc2lem1 9932 ackbij1lem16 10147 sornom 10190 fin23lem36 10261 isf32lem1 10266 isf32lem2 10267 zornn0g 10418 canthwe 10564 indpi 10820 seqid2 13973 pfxccatin12lem3 14656 fsum2d 15696 fsumabs 15726 fsumiun 15746 fprod2d 15906 prmodvdslcmf 16977 prmlem1a 17036 gicsubgen 19176 dmatelnd 22399 dis2ndc 23363 1stcelcls 23364 ptcmpfi 23716 caubl 25224 caublcls 25225 volsuplem 25472 cpnord 25853 fsumvma 27140 gausslemma2dlem4 27296 pntpbnd1 27513 3pthdlem1 30126 frgr3vlem1 30235 3vfriswmgrlem 30239 fzto1st 33058 psgnfzto1st 33060 wl-equsal1t 37515 ax12f 38918 incssnn0 42684 lzenom 42743 omabs2 43305 clsk1independent 44019 iidn3 44475 truniALT 44515 onfrALTlem2 44520 ee220 44612 dvmptfprodlem 45926 dvnprodlem1 45928 fourierdlem89 46177 fourierdlem91 46179 sge0reuz 46429 hoi2toco 46589 gpgedg2iv 48052 linds0 48451 |
| Copyright terms: Public domain | W3C validator |