Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version |
Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
2a1i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 |
This theorem is referenced by: ax13dgen3 2133 sbcrext 3811 mptexgf 7130 oaordi 8408 nnaordi 8480 mapsnend 8861 cantnfval2 9471 infxpenc2lem1 9821 ackbij1lem16 10037 sornom 10079 fin23lem36 10150 isf32lem1 10155 isf32lem2 10156 zornn0g 10307 canthwe 10453 indpi 10709 seqid2 13815 pfxccatin12lem3 14490 fsum2d 15528 fsumabs 15558 fsumiun 15578 fprod2d 15736 prmodvdslcmf 16793 prmlem1a 16853 gicsubgen 18939 dmatelnd 21690 dis2ndc 22656 1stcelcls 22657 ptcmpfi 23009 caubl 24517 caublcls 24518 volsuplem 24764 cpnord 25144 fsumvma 26406 gausslemma2dlem4 26562 pntpbnd1 26779 3pthdlem1 28573 frgr3vlem1 28682 3vfriswmgrlem 28686 fzto1st 31415 psgnfzto1st 31417 wl-equsal1t 35744 ax12f 36996 incssnn0 40570 lzenom 40629 clsk1independent 41694 iidn3 42159 truniALT 42199 onfrALTlem2 42204 ee220 42296 dvmptfprodlem 43534 fourierdlem89 43785 fourierdlem91 43787 sge0reuz 44035 hoi2toco 44195 linds0 45864 |
Copyright terms: Public domain | W3C validator |