| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version | ||
| Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 2a1i.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| 2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 |
| This theorem is referenced by: ax13dgen3 2144 sbcrext 3820 mptexgf 7162 oaordi 8467 nnaordi 8539 mapsnend 8965 cantnfval2 9566 infxpenc2lem1 9917 ackbij1lem16 10132 sornom 10175 fin23lem36 10246 isf32lem1 10251 isf32lem2 10252 zornn0g 10403 canthwe 10549 indpi 10805 seqid2 13957 pfxccatin12lem3 14641 fsum2d 15680 fsumabs 15710 fsumiun 15730 fprod2d 15890 prmodvdslcmf 16961 prmlem1a 17020 gicsubgen 19193 dmatelnd 22412 dis2ndc 23376 1stcelcls 23377 ptcmpfi 23729 caubl 25236 caublcls 25237 volsuplem 25484 cpnord 25865 fsumvma 27152 gausslemma2dlem4 27308 pntpbnd1 27525 3pthdlem1 30146 frgr3vlem1 30255 3vfriswmgrlem 30259 fzto1st 33079 psgnfzto1st 33081 wl-equsal1t 37607 ax12f 39059 incssnn0 42828 lzenom 42887 omabs2 43449 clsk1independent 44163 iidn3 44618 truniALT 44658 onfrALTlem2 44663 ee220 44755 dvmptfprodlem 46066 dvnprodlem1 46068 fourierdlem89 46317 fourierdlem91 46319 sge0reuz 46569 hoi2toco 46729 gpgedg2iv 48191 linds0 48590 |
| Copyright terms: Public domain | W3C validator |