![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version |
Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
2a1i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 |
This theorem is referenced by: ax13dgen3 2137 sbcrext 3882 mptexgf 7242 oaordi 8583 nnaordi 8655 mapsnend 9075 cantnfval2 9707 infxpenc2lem1 10057 ackbij1lem16 10272 sornom 10315 fin23lem36 10386 isf32lem1 10391 isf32lem2 10392 zornn0g 10543 canthwe 10689 indpi 10945 seqid2 14086 pfxccatin12lem3 14767 fsum2d 15804 fsumabs 15834 fsumiun 15854 fprod2d 16014 prmodvdslcmf 17081 prmlem1a 17141 gicsubgen 19310 dmatelnd 22518 dis2ndc 23484 1stcelcls 23485 ptcmpfi 23837 caubl 25356 caublcls 25357 volsuplem 25604 cpnord 25986 fsumvma 27272 gausslemma2dlem4 27428 pntpbnd1 27645 3pthdlem1 30193 frgr3vlem1 30302 3vfriswmgrlem 30306 fzto1st 33106 psgnfzto1st 33108 wl-equsal1t 37523 ax12f 38922 incssnn0 42699 lzenom 42758 omabs2 43322 clsk1independent 44036 iidn3 44499 truniALT 44539 onfrALTlem2 44544 ee220 44636 dvmptfprodlem 45900 dvnprodlem1 45902 fourierdlem89 46151 fourierdlem91 46153 sge0reuz 46403 hoi2toco 46563 linds0 48311 |
Copyright terms: Public domain | W3C validator |