![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version |
Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
2a1i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 |
This theorem is referenced by: ax13dgen3 2135 sbcrext 3867 mptexgf 7223 oaordi 8545 nnaordi 8617 mapsnend 9035 cantnfval2 9663 infxpenc2lem1 10013 ackbij1lem16 10229 sornom 10271 fin23lem36 10342 isf32lem1 10347 isf32lem2 10348 zornn0g 10499 canthwe 10645 indpi 10901 seqid2 14013 pfxccatin12lem3 14681 fsum2d 15716 fsumabs 15746 fsumiun 15766 fprod2d 15924 prmodvdslcmf 16979 prmlem1a 17039 gicsubgen 19151 dmatelnd 21997 dis2ndc 22963 1stcelcls 22964 ptcmpfi 23316 caubl 24824 caublcls 24825 volsuplem 25071 cpnord 25451 fsumvma 26713 gausslemma2dlem4 26869 pntpbnd1 27086 3pthdlem1 29414 frgr3vlem1 29523 3vfriswmgrlem 29527 fzto1st 32257 psgnfzto1st 32259 wl-equsal1t 36405 ax12f 37805 incssnn0 41439 lzenom 41498 omabs2 42072 clsk1independent 42787 iidn3 43252 truniALT 43292 onfrALTlem2 43297 ee220 43389 dvmptfprodlem 44650 fourierdlem89 44901 fourierdlem91 44903 sge0reuz 45153 hoi2toco 45313 linds0 47136 |
Copyright terms: Public domain | W3C validator |