| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version | ||
| Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 2a1i.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| 2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 |
| This theorem is referenced by: ax13dgen3 2139 sbcrext 3848 mptexgf 7214 oaordi 8558 nnaordi 8630 mapsnend 9050 cantnfval2 9683 infxpenc2lem1 10033 ackbij1lem16 10248 sornom 10291 fin23lem36 10362 isf32lem1 10367 isf32lem2 10368 zornn0g 10519 canthwe 10665 indpi 10921 seqid2 14066 pfxccatin12lem3 14750 fsum2d 15787 fsumabs 15817 fsumiun 15837 fprod2d 15997 prmodvdslcmf 17067 prmlem1a 17126 gicsubgen 19262 dmatelnd 22434 dis2ndc 23398 1stcelcls 23399 ptcmpfi 23751 caubl 25260 caublcls 25261 volsuplem 25508 cpnord 25889 fsumvma 27176 gausslemma2dlem4 27332 pntpbnd1 27549 3pthdlem1 30145 frgr3vlem1 30254 3vfriswmgrlem 30258 fzto1st 33114 psgnfzto1st 33116 wl-equsal1t 37560 ax12f 38958 incssnn0 42734 lzenom 42793 omabs2 43356 clsk1independent 44070 iidn3 44526 truniALT 44566 onfrALTlem2 44571 ee220 44663 dvmptfprodlem 45973 dvnprodlem1 45975 fourierdlem89 46224 fourierdlem91 46226 sge0reuz 46476 hoi2toco 46636 linds0 48441 |
| Copyright terms: Public domain | W3C validator |