Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version |
Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
2a1i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 |
This theorem is referenced by: ax13dgen3 2138 sbcrext 3810 oaordi 8353 nnaordi 8425 mapsnend 8796 cantnfval2 9388 infxpenc2lem1 9759 ackbij1lem16 9975 sornom 10017 fin23lem36 10088 isf32lem1 10093 isf32lem2 10094 zornn0g 10245 canthwe 10391 indpi 10647 seqid2 13750 pfxccatin12lem3 14426 fsum2d 15464 fsumabs 15494 fsumiun 15514 fprod2d 15672 prmodvdslcmf 16729 prmlem1a 16789 gicsubgen 18875 dmatelnd 21626 dis2ndc 22592 1stcelcls 22593 ptcmpfi 22945 caubl 24453 caublcls 24454 volsuplem 24700 cpnord 25080 fsumvma 26342 gausslemma2dlem4 26498 pntpbnd1 26715 3pthdlem1 28507 frgr3vlem1 28616 3vfriswmgrlem 28620 fzto1st 31349 psgnfzto1st 31351 wl-equsal1t 35679 ax12f 36933 incssnn0 40513 lzenom 40572 clsk1independent 41609 iidn3 42074 truniALT 42114 onfrALTlem2 42119 ee220 42211 dvmptfprodlem 43439 fourierdlem89 43690 fourierdlem91 43692 sge0reuz 43939 hoi2toco 44099 linds0 45758 |
Copyright terms: Public domain | W3C validator |