Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2a1i | Structured version Visualization version GIF version |
Description: Inference introducing two antecedents. Two applications of a1i 11. Inference associated with 2a1 28. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
2a1i.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
2a1i | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2a1i.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → 𝜑) |
3 | 2 | a1i 11 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 |
This theorem is referenced by: ax13dgen3 2139 sbcrext 3811 oaordi 8369 nnaordi 8441 mapsnend 8818 cantnfval2 9415 infxpenc2lem1 9786 ackbij1lem16 10002 sornom 10044 fin23lem36 10115 isf32lem1 10120 isf32lem2 10121 zornn0g 10272 canthwe 10418 indpi 10674 seqid2 13780 pfxccatin12lem3 14456 fsum2d 15494 fsumabs 15524 fsumiun 15544 fprod2d 15702 prmodvdslcmf 16759 prmlem1a 16819 gicsubgen 18905 dmatelnd 21656 dis2ndc 22622 1stcelcls 22623 ptcmpfi 22975 caubl 24483 caublcls 24484 volsuplem 24730 cpnord 25110 fsumvma 26372 gausslemma2dlem4 26528 pntpbnd1 26745 3pthdlem1 28537 frgr3vlem1 28646 3vfriswmgrlem 28650 fzto1st 31379 psgnfzto1st 31381 wl-equsal1t 35709 ax12f 36963 incssnn0 40542 lzenom 40601 clsk1independent 41638 iidn3 42103 truniALT 42143 onfrALTlem2 42148 ee220 42240 dvmptfprodlem 43467 fourierdlem89 43718 fourierdlem91 43720 sge0reuz 43967 hoi2toco 44127 linds0 45785 |
Copyright terms: Public domain | W3C validator |