MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5ea Structured version   Visualization version   GIF version

Theorem ax5ea 1917
Description: If a formula holds for some value of a variable not occurring in it, then it holds for all values of that variable. (Contributed by BJ, 28-Dec-2020.)
Assertion
Ref Expression
ax5ea (∃𝑥𝜑 → ∀𝑥𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ax5ea
StepHypRef Expression
1 ax5e 1916 . 2 (∃𝑥𝜑𝜑)
2 ax-5 1914 . 2 (𝜑 → ∀𝑥𝜑)
31, 2syl 17 1 (∃𝑥𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  nfv  1918
  Copyright terms: Public domain W3C validator