Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfv | Structured version Visualization version GIF version |
Description: If 𝑥 is not present in 𝜑, then 𝑥 is not free in 𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Definition change. (Revised by Wolf Lammen, 12-Sep-2021.) |
Ref | Expression |
---|---|
nfv | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax5ea 1917 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) | |
2 | 1 | nfi 1792 | 1 ⊢ Ⅎ𝑥𝜑 |
Copyright terms: Public domain | W3C validator |