 Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfequid-o Structured version   Visualization version   GIF version

Theorem nfequid-o 35577
 Description: Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (The proof uses only ax-4 1791, ax-7 1992, ax-c9 35557, and ax-gen 1777. This shows that this can be proved without ax6 2357, even though the theorem equid 1996 cannot be. A shorter proof using ax6 2357 is obtainable from equid 1996 and hbth 1785.) Remark added 2-Dec-2015 NM: This proof does implicitly use ax6v 1948, which is used for the derivation of axc9 2355, unless we consider ax-c9 35557 the starting axiom rather than ax-13 2344. (Contributed by NM, 13-Jan-2011.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfequid-o 𝑦 𝑥 = 𝑥

Proof of Theorem nfequid-o
StepHypRef Expression
1 hbequid 35576 . 2 (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)
21nf5i 2117 1 𝑦 𝑥 = 𝑥
 Colors of variables: wff setvar class Syntax hints:  Ⅎwnf 1765 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-10 2112  ax-c9 35557 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762  df-nf 1766 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator