MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axio Structured version   Visualization version   GIF version

Theorem axio 2699
Description: Definition of 'or' (intuitionistic logic axiom ax-io). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
Assertion
Ref Expression
axio (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Proof of Theorem axio
StepHypRef Expression
1 jaob 959 1 (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator