MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaob Structured version   Visualization version   GIF version

Theorem jaob 944
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
jaob (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Proof of Theorem jaob
StepHypRef Expression
1 pm2.67-2 875 . . 3 (((𝜑𝜒) → 𝜓) → (𝜑𝜓))
2 olc 854 . . . 4 (𝜒 → (𝜑𝜒))
32imim1i 63 . . 3 (((𝜑𝜒) → 𝜓) → (𝜒𝜓))
41, 3jca 504 . 2 (((𝜑𝜒) → 𝜓) → ((𝜑𝜓) ∧ (𝜒𝜓)))
5 pm3.44 942 . 2 (((𝜑𝜓) ∧ (𝜒𝜓)) → ((𝜑𝜒) → 𝜓))
64, 5impbii 201 1 (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834
This theorem is referenced by:  pm4.77  945  pm5.53  987  pm4.83  1007  axio  2738  unss  4048  ralunb  4055  intun  4781  intpr  4782  relop  5571  sqrt2irr  15462  algcvgblem  15777  efgred  18634  caucfil  23589  plydivex  24589  2sqlem6  25701  arg-ax  33290  tendoeq2  37361  ifpidg  39259
  Copyright terms: Public domain W3C validator