MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaob Structured version   Visualization version   GIF version

Theorem jaob 963
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
jaob (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Proof of Theorem jaob
StepHypRef Expression
1 pm2.67-2 891 . . 3 (((𝜑𝜒) → 𝜓) → (𝜑𝜓))
2 olc 868 . . . 4 (𝜒 → (𝜑𝜒))
32imim1i 63 . . 3 (((𝜑𝜒) → 𝜓) → (𝜒𝜓))
41, 3jca 511 . 2 (((𝜑𝜒) → 𝜓) → ((𝜑𝜓) ∧ (𝜒𝜓)))
5 pm3.44 961 . 2 (((𝜑𝜓) ∧ (𝜒𝜓)) → ((𝜑𝜒) → 𝜓))
64, 5impbii 209 1 (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  pm4.77  964  pm5.53  1006  pm4.83  1026  axio  2691  elunant  4147  intprg  4945  relop  5814  sqrt2irr  16217  algcvgblem  16547  efgred  19678  caucfil  25183  plydivex  26205  2sqlem6  27334  arg-ax  36404  tendoeq2  40768  ifpidg  43480
  Copyright terms: Public domain W3C validator