Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jaob | Structured version Visualization version GIF version |
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
jaob | ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.67-2 889 | . . 3 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → (𝜑 → 𝜓)) | |
2 | olc 865 | . . . 4 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
3 | 2 | imim1i 63 | . . 3 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → (𝜒 → 𝜓)) |
4 | 1, 3 | jca 512 | . 2 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
5 | pm3.44 957 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓)) → ((𝜑 ∨ 𝜒) → 𝜓)) | |
6 | 4, 5 | impbii 208 | 1 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: pm4.77 960 pm5.53 1002 pm4.83 1022 axio 2697 elunant 4124 intprg 4926 intprOLD 4928 relop 5786 sqrt2irr 16049 algcvgblem 16371 efgred 19441 caucfil 24545 plydivex 25555 2sqlem6 26669 arg-ax 34696 tendoeq2 39035 ifpidg 41408 |
Copyright terms: Public domain | W3C validator |