Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jaob | Structured version Visualization version GIF version |
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
jaob | ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.67-2 888 | . . 3 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → (𝜑 → 𝜓)) | |
2 | olc 864 | . . . 4 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
3 | 2 | imim1i 63 | . . 3 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → (𝜒 → 𝜓)) |
4 | 1, 3 | jca 511 | . 2 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
5 | pm3.44 956 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓)) → ((𝜑 ∨ 𝜒) → 𝜓)) | |
6 | 4, 5 | impbii 208 | 1 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: pm4.77 959 pm5.53 1001 pm4.83 1021 axio 2699 elunant 4108 intprg 4909 intprOLD 4911 relop 5748 sqrt2irr 15886 algcvgblem 16210 efgred 19269 caucfil 24352 plydivex 25362 2sqlem6 26476 arg-ax 34532 tendoeq2 38715 ifpidg 40996 |
Copyright terms: Public domain | W3C validator |