![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jaob | Structured version Visualization version GIF version |
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
jaob | ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.67-2 875 | . . 3 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → (𝜑 → 𝜓)) | |
2 | olc 854 | . . . 4 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
3 | 2 | imim1i 63 | . . 3 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → (𝜒 → 𝜓)) |
4 | 1, 3 | jca 504 | . 2 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
5 | pm3.44 942 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓)) → ((𝜑 ∨ 𝜒) → 𝜓)) | |
6 | 4, 5 | impbii 201 | 1 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 |
This theorem is referenced by: pm4.77 945 pm5.53 987 pm4.83 1007 axio 2738 unss 4048 ralunb 4055 intun 4781 intpr 4782 relop 5571 sqrt2irr 15462 algcvgblem 15777 efgred 18634 caucfil 23589 plydivex 24589 2sqlem6 25701 arg-ax 33290 tendoeq2 37361 ifpidg 39259 |
Copyright terms: Public domain | W3C validator |