MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaob Structured version   Visualization version   GIF version

Theorem jaob 962
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
jaob (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Proof of Theorem jaob
StepHypRef Expression
1 pm2.67-2 892 . . 3 (((𝜑𝜒) → 𝜓) → (𝜑𝜓))
2 olc 868 . . . 4 (𝜒 → (𝜑𝜒))
32imim1i 63 . . 3 (((𝜑𝜒) → 𝜓) → (𝜒𝜓))
41, 3jca 515 . 2 (((𝜑𝜒) → 𝜓) → ((𝜑𝜓) ∧ (𝜒𝜓)))
5 pm3.44 960 . 2 (((𝜑𝜓) ∧ (𝜒𝜓)) → ((𝜑𝜒) → 𝜓))
64, 5impbii 212 1 (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848
This theorem is referenced by:  pm4.77  963  pm5.53  1005  pm4.83  1025  axio  2698  elunant  4092  intprg  4892  intprOLD  4894  relop  5719  sqrt2irr  15810  algcvgblem  16134  efgred  19138  caucfil  24180  plydivex  25190  2sqlem6  26304  arg-ax  34342  tendoeq2  38525  ifpidg  40783
  Copyright terms: Public domain W3C validator