Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bi123impib Structured version   Visualization version   GIF version

Theorem bi123impib 42114
Description: 3impib 1115 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
Hypothesis
Ref Expression
bi123impib.1 (𝜑 ↔ ((𝜓𝜒) ↔ 𝜃))
Assertion
Ref Expression
bi123impib ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem bi123impib
StepHypRef Expression
1 bi123impib.1 . . 3 (𝜑 ↔ ((𝜓𝜒) ↔ 𝜃))
21biimpi 215 . 2 (𝜑 → ((𝜓𝜒) ↔ 𝜃))
32bi23impib 42112 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator