Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sylget2 | Structured version Visualization version GIF version |
Description: Uncurried (imported) form of bj-sylget 34729. (Contributed by BJ, 2-May-2019.) |
Ref | Expression |
---|---|
bj-sylget2 | ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ (∃𝑥𝜓 → 𝜒)) → (∃𝑥𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sylget 34729 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ((∃𝑥𝜓 → 𝜒) → (∃𝑥𝜑 → 𝜒))) | |
2 | 1 | imp 406 | 1 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ (∃𝑥𝜓 → 𝜒)) → (∃𝑥𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |