Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sylggt Structured version   Visualization version   GIF version

Theorem bj-sylggt 36583
Description: Stronger form of sylgt 1820, closer to ax-2 7. (Contributed by BJ, 30-Jul-2025.)
Assertion
Ref Expression
bj-sylggt ((𝜑 → ∀𝑥(𝜓𝜒)) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒)))

Proof of Theorem bj-sylggt
StepHypRef Expression
1 alim 1808 . 2 (∀𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒))
21imim3i 64 1 ((𝜑 → ∀𝑥(𝜓𝜒)) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator