![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sylggt | Structured version Visualization version GIF version |
Description: Stronger form of sylgt 1820, closer to ax-2 7. (Contributed by BJ, 30-Jul-2025.) |
Ref | Expression |
---|---|
bj-sylggt | ⊢ ((𝜑 → ∀𝑥(𝜓 → 𝜒)) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim 1808 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) | |
2 | 1 | imim3i 64 | 1 ⊢ ((𝜑 → ∀𝑥(𝜓 → 𝜒)) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1807 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |