Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim3i | Structured version Visualization version GIF version |
Description: Inference adding three nested antecedents. (Contributed by NM, 19-Dec-2006.) |
Ref | Expression |
---|---|
imim3i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim3i | ⊢ ((𝜃 → 𝜑) → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim3i.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | imim2i 16 | . 2 ⊢ ((𝜃 → 𝜑) → (𝜃 → (𝜓 → 𝜒))) |
3 | 2 | a2d 29 | 1 ⊢ ((𝜃 → 𝜑) → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.83 84 pm5.74 273 pm3.43i 476 sbi1 2081 ral2imi 3072 ceqsalt 3430 elabgt 3572 bj-bi3ant 34427 bj-ceqsalt0 34726 bj-ceqsalt1 34727 pm10.57 41568 ee33 41720 |
Copyright terms: Public domain | W3C validator |