| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim3i | Structured version Visualization version GIF version | ||
| Description: Inference adding three nested antecedents. (Contributed by NM, 19-Dec-2006.) |
| Ref | Expression |
|---|---|
| imim3i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim3i | ⊢ ((𝜃 → 𝜑) → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim3i.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜃 → 𝜑) → (𝜃 → (𝜓 → 𝜒))) |
| 3 | 2 | a2d 29 | 1 ⊢ ((𝜃 → 𝜑) → ((𝜃 → 𝜓) → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: pm2.83 84 pm5.74 270 pm3.43i 472 sbi1 2074 ral2imi 3071 ceqsalt 3470 elabgtOLD 3623 elabgtOLDOLD 3624 bj-bi3ant 36623 bj-sylggt 36651 bj-ceqsalt0 36918 bj-ceqsalt1 36919 pm10.57 44404 ee33 44554 |
| Copyright terms: Public domain | W3C validator |