| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-3exbi | Structured version Visualization version GIF version | ||
| Description: Closed form of 3exbii 1849. (Contributed by BJ, 6-May-2019.) |
| Ref | Expression |
|---|---|
| bj-3exbi | ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1846 | . . 3 ⊢ (∀𝑧(𝜑 ↔ 𝜓) → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) | |
| 2 | 1 | 2alimi 1811 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) → ∀𝑥∀𝑦(∃𝑧𝜑 ↔ ∃𝑧𝜓)) |
| 3 | bj-2exbi 36591 | . 2 ⊢ (∀𝑥∀𝑦(∃𝑧𝜑 ↔ ∃𝑧𝜓) → (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |