MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylgt Structured version   Visualization version   GIF version

Theorem sylgt 1824
Description: Closed form of sylg 1825. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
sylgt (∀𝑥(𝜓𝜒) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒)))

Proof of Theorem sylgt
StepHypRef Expression
1 alim 1813 . 2 (∀𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒))
21imim2d 57 1 (∀𝑥(𝜓𝜒) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1812
This theorem is referenced by:  bj-sylgt2  34799  bj-alrimg  34800  bj-nexdh  34809  bj-alrim  34875  bj-cbv3ta  34968
  Copyright terms: Public domain W3C validator