MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1808
Description: Restatement of Axiom ax-4 1807, for labeling consistency. It should be the only theorem using ax-4 1807. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1807 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-4 1807
This theorem is referenced by:  alimi  1809  al2im  1812  sylgt  1820  19.38a  1838  stdpc5v  1937  axc4  2325  hbaltg  35771  bj-2alim  36576  bj-sylggt  36583  bj-alexim  36593  bj-cbvalimt  36605  bj-eximALT  36607  bj-hbalt  36647  bj-nfdt0  36661  bj-nnf-alrim  36721  bj-nnflemaa  36728  bj-nnflemea  36731  stdpc5t  36793  al3im  43609  hbalg  44526  al2imVD  44833  hbalgVD  44876
  Copyright terms: Public domain W3C validator