![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1803, for labeling consistency. It should be the only theorem using ax-4 1803. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1803 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-4 1803 |
This theorem is referenced by: alimi 1805 al2im 1808 sylgt 1816 19.38a 1834 stdpc5v 1933 axc4 2309 hbaltg 35534 bj-2alim 36218 bj-alexim 36234 bj-cbvalimt 36246 bj-eximALT 36248 bj-hbalt 36289 bj-nfdt0 36303 bj-nnf-alrim 36363 bj-nnflemaa 36370 bj-nnflemea 36373 stdpc5t 36435 al3im 43219 hbalg 44136 al2imVD 44443 hbalgVD 44486 |
Copyright terms: Public domain | W3C validator |