MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1895
Description: Restatement of Axiom ax-4 1894, for labeling consistency. It should be the only theorem using ax-4 1894. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1894 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1635
This theorem was proved from axioms:  ax-4 1894
This theorem is referenced by:  alimi  1896  al2im  1899  sylgt  1906  19.38a  1924  19.38aOLD  1925  stdpc5v  2029  spfwOLD  2132  19.21tOLDOLD  2240  axc4  2305  19.21t-1OLD  2385  eunex  5053  hbaltg  32027  bj-2alim  32903  bj-alexim  32914  bj-hbalt  32980  bj-nfdt0  32994  bj-eunex  33107  stdpc5t  33121  al3im  38432  hbalg  39263  al2imVD  39586  hbalgVD  39629
  Copyright terms: Public domain W3C validator