![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1812, for labeling consistency. It should be the only theorem using ax-4 1812. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1812 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-4 1812 |
This theorem is referenced by: alimi 1814 al2im 1817 sylgt 1825 19.38a 1843 stdpc5v 1942 axc4 2315 hbaltg 34779 bj-2alim 35488 bj-alexim 35504 bj-cbvalimt 35516 bj-eximALT 35518 bj-hbalt 35559 bj-nfdt0 35573 bj-nnf-alrim 35633 bj-nnflemaa 35640 bj-nnflemea 35643 stdpc5t 35705 al3im 42398 hbalg 43316 al2imVD 43623 hbalgVD 43666 |
Copyright terms: Public domain | W3C validator |