MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1804
Description: Restatement of Axiom ax-4 1803, for labeling consistency. It should be the only theorem using ax-4 1803. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1803 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531
This theorem was proved from axioms:  ax-4 1803
This theorem is referenced by:  alimi  1805  al2im  1808  sylgt  1816  19.38a  1834  stdpc5v  1933  axc4  2309  hbaltg  35534  bj-2alim  36218  bj-alexim  36234  bj-cbvalimt  36246  bj-eximALT  36248  bj-hbalt  36289  bj-nfdt0  36303  bj-nnf-alrim  36363  bj-nnflemaa  36370  bj-nnflemea  36373  stdpc5t  36435  al3im  43219  hbalg  44136  al2imVD  44443  hbalgVD  44486
  Copyright terms: Public domain W3C validator