Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1812, for labeling consistency. It should be the only theorem using ax-4 1812. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1812 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-4 1812 |
This theorem is referenced by: alimi 1814 al2im 1817 sylgt 1824 19.38a 1842 stdpc5v 1941 axc4 2315 hbaltg 33783 bj-2alim 34792 bj-alexim 34808 bj-cbvalimt 34820 bj-eximALT 34822 bj-hbalt 34863 bj-nfdt0 34877 bj-nnf-alrim 34937 bj-nnflemaa 34944 bj-nnflemea 34947 stdpc5t 35010 al3im 41255 hbalg 42175 al2imVD 42482 hbalgVD 42525 |
Copyright terms: Public domain | W3C validator |