MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1812
Description: Restatement of Axiom ax-4 1811, for labeling consistency. It should be the only theorem using ax-4 1811. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1811 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-4 1811
This theorem is referenced by:  alimi  1813  al2im  1816  sylgt  1824  19.38a  1842  stdpc5v  1941  axc4  2314  hbaltg  34767  bj-2alim  35476  bj-alexim  35492  bj-cbvalimt  35504  bj-eximALT  35506  bj-hbalt  35547  bj-nfdt0  35561  bj-nnf-alrim  35621  bj-nnflemaa  35628  bj-nnflemea  35631  stdpc5t  35693  al3im  42383  hbalg  43301  al2imVD  43608  hbalgVD  43651
  Copyright terms: Public domain W3C validator