![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1805, for labeling consistency. It should be the only theorem using ax-4 1805. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1805 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1534 |
This theorem was proved from axioms: ax-4 1805 |
This theorem is referenced by: alimi 1807 al2im 1810 sylgt 1818 19.38a 1836 stdpc5v 1935 axc4 2319 hbaltg 35788 bj-2alim 36592 bj-sylggt 36599 bj-alexim 36609 bj-cbvalimt 36621 bj-eximALT 36623 bj-hbalt 36663 bj-nfdt0 36677 bj-nnf-alrim 36737 bj-nnflemaa 36744 bj-nnflemea 36747 stdpc5t 36809 al3im 43636 hbalg 44552 al2imVD 44859 hbalgVD 44902 |
Copyright terms: Public domain | W3C validator |