| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version | ||
| Description: Restatement of Axiom ax-4 1810, for labeling consistency. It should be the only theorem using ax-4 1810. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1810 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-4 1810 |
| This theorem is referenced by: alimi 1812 al2im 1815 sylgt 1823 19.38a 1841 stdpc5v 1939 axc4 2322 hbaltg 35841 bj-2alim 36644 bj-sylggt 36651 bj-alexim 36661 bj-cbvalimt 36673 bj-eximALT 36675 bj-hbalt 36715 bj-nfdt0 36729 bj-nnf-alrim 36789 bj-nnflemaa 36796 bj-nnflemea 36799 stdpc5t 36861 al3im 43680 hbalg 44588 al2imVD 44894 hbalgVD 44937 |
| Copyright terms: Public domain | W3C validator |