MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1813
Description: Restatement of Axiom ax-4 1812, for labeling consistency. It should be the only theorem using ax-4 1812. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1812 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-4 1812
This theorem is referenced by:  alimi  1814  al2im  1817  sylgt  1824  19.38a  1842  stdpc5v  1941  axc4  2315  hbaltg  33783  bj-2alim  34792  bj-alexim  34808  bj-cbvalimt  34820  bj-eximALT  34822  bj-hbalt  34863  bj-nfdt0  34877  bj-nnf-alrim  34937  bj-nnflemaa  34944  bj-nnflemea  34947  stdpc5t  35010  al3im  41255  hbalg  42175  al2imVD  42482  hbalgVD  42525
  Copyright terms: Public domain W3C validator