MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1810
Description: Restatement of Axiom ax-4 1809, for labeling consistency. It should be the only theorem using ax-4 1809. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1809 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-4 1809
This theorem is referenced by:  alimi  1811  al2im  1814  sylgt  1822  19.38a  1840  stdpc5v  1938  axc4  2321  hbaltg  35808  bj-2alim  36611  bj-sylggt  36618  bj-alexim  36628  bj-cbvalimt  36640  bj-eximALT  36642  bj-hbalt  36682  bj-nfdt0  36696  bj-nnf-alrim  36756  bj-nnflemaa  36763  bj-nnflemea  36766  stdpc5t  36828  al3im  43660  hbalg  44575  al2imVD  44882  hbalgVD  44925
  Copyright terms: Public domain W3C validator