MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1854
Description: Restatement of Axiom ax-4 1853, for labeling consistency. It should be the only theorem using ax-4 1853. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1853 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1599
This theorem was proved from axioms:  ax-4 1853
This theorem is referenced by:  alimi  1855  al2im  1858  sylgt  1865  19.38a  1883  19.38aOLD  1884  stdpc5v  1981  axc4  2295  eunexOLD  5102  hbaltg  32301  bj-2alim  33173  bj-exlalrim  33183  bj-alexim  33184  bj-cbvalimt  33197  bj-hbalt  33260  bj-nfdt0  33274  stdpc5t  33389  al3im  38877  hbalg  39697  al2imVD  40013  hbalgVD  40056
  Copyright terms: Public domain W3C validator