MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1812
Description: Restatement of Axiom ax-4 1811, for labeling consistency. It should be the only theorem using ax-4 1811. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1811 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536
This theorem was proved from axioms:  ax-4 1811
This theorem is referenced by:  alimi  1813  al2im  1816  sylgt  1823  19.38a  1841  stdpc5v  1940  axc4  2342  hbaltg  33109  bj-2alim  34001  bj-alexim  34017  bj-cbvalimt  34029  bj-eximALT  34031  bj-hbalt  34072  bj-nfdt0  34086  bj-nnf-alrim  34143  bj-nnflemaa  34150  bj-nnflemea  34153  stdpc5t  34209  al3im  40263  hbalg  41181  al2imVD  41488  hbalgVD  41531
  Copyright terms: Public domain W3C validator