MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1806
Description: Restatement of Axiom ax-4 1805, for labeling consistency. It should be the only theorem using ax-4 1805. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1805 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1534
This theorem was proved from axioms:  ax-4 1805
This theorem is referenced by:  alimi  1807  al2im  1810  sylgt  1818  19.38a  1836  stdpc5v  1935  axc4  2319  hbaltg  35788  bj-2alim  36592  bj-sylggt  36599  bj-alexim  36609  bj-cbvalimt  36621  bj-eximALT  36623  bj-hbalt  36663  bj-nfdt0  36677  bj-nnf-alrim  36737  bj-nnflemaa  36744  bj-nnflemea  36747  stdpc5t  36809  al3im  43636  hbalg  44552  al2imVD  44859  hbalgVD  44902
  Copyright terms: Public domain W3C validator