Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1813, for labeling consistency. It should be the only theorem using ax-4 1813. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1813 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-4 1813 |
This theorem is referenced by: alimi 1815 al2im 1818 sylgt 1825 19.38a 1843 stdpc5v 1942 axc4 2319 hbaltg 33689 bj-2alim 34719 bj-alexim 34735 bj-cbvalimt 34747 bj-eximALT 34749 bj-hbalt 34790 bj-nfdt0 34804 bj-nnf-alrim 34864 bj-nnflemaa 34871 bj-nnflemea 34874 stdpc5t 34937 al3im 41144 hbalg 42064 al2imVD 42371 hbalgVD 42414 |
Copyright terms: Public domain | W3C validator |