![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1811, for labeling consistency. It should be the only theorem using ax-4 1811. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1811 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 |
This theorem was proved from axioms: ax-4 1811 |
This theorem is referenced by: alimi 1813 al2im 1816 sylgt 1824 19.38a 1842 stdpc5v 1941 axc4 2314 hbaltg 34767 bj-2alim 35476 bj-alexim 35492 bj-cbvalimt 35504 bj-eximALT 35506 bj-hbalt 35547 bj-nfdt0 35561 bj-nnf-alrim 35621 bj-nnflemaa 35628 bj-nnflemea 35631 stdpc5t 35693 al3im 42383 hbalg 43301 al2imVD 43608 hbalgVD 43651 |
Copyright terms: Public domain | W3C validator |