![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1807, for labeling consistency. It should be the only theorem using ax-4 1807. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1807 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-4 1807 |
This theorem is referenced by: alimi 1809 al2im 1812 sylgt 1820 19.38a 1838 stdpc5v 1937 axc4 2325 hbaltg 35771 bj-2alim 36576 bj-sylggt 36583 bj-alexim 36593 bj-cbvalimt 36605 bj-eximALT 36607 bj-hbalt 36647 bj-nfdt0 36661 bj-nnf-alrim 36721 bj-nnflemaa 36728 bj-nnflemea 36731 stdpc5t 36793 al3im 43609 hbalg 44526 al2imVD 44833 hbalgVD 44876 |
Copyright terms: Public domain | W3C validator |