![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfccdeq | Structured version Visualization version GIF version |
Description: Variation of nfcdeq 3677 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-11 2093. (Revised by Gino Giotto, 19-May-2023.) |
Ref | Expression |
---|---|
nfccdeq.1 | ⊢ Ⅎ𝑥𝐴 |
nfccdeq.2 | ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
nfccdeq | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfccdeq.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcriv 2922 | . . 3 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
3 | eqid 2778 | . . . . 5 ⊢ 𝑧 = 𝑧 | |
4 | 3 | cdeqth 3667 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝑧 = 𝑧) |
5 | nfccdeq.2 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | 4, 5 | cdeqel 3676 | . . 3 ⊢ CondEq(𝑥 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
7 | 2, 6 | nfcdeq 3677 | . 2 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
8 | 7 | eqriv 2775 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 Ⅎwnfc 2916 CondEqwcdeq 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-12 2106 ax-13 2301 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ex 1743 df-nf 1747 df-sb 2016 df-cleq 2771 df-clel 2846 df-nfc 2918 df-cdeq 3664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |