MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfccdeq Structured version   Visualization version   GIF version

Theorem nfccdeq 3678
Description: Variation of nfcdeq 3677 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-11 2093. (Revised by Gino Giotto, 19-May-2023.)
Hypotheses
Ref Expression
nfccdeq.1 𝑥𝐴
nfccdeq.2 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
nfccdeq 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem nfccdeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4 𝑥𝐴
21nfcriv 2922 . . 3 𝑥 𝑧𝐴
3 eqid 2778 . . . . 5 𝑧 = 𝑧
43cdeqth 3667 . . . 4 CondEq(𝑥 = 𝑦𝑧 = 𝑧)
5 nfccdeq.2 . . . 4 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
64, 5cdeqel 3676 . . 3 CondEq(𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
72, 6nfcdeq 3677 . 2 (𝑧𝐴𝑧𝐵)
87eqriv 2775 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  wnfc 2916  CondEqwcdeq 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-12 2106  ax-13 2301  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747  df-sb 2016  df-cleq 2771  df-clel 2846  df-nfc 2918  df-cdeq 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator