MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfccdeq Structured version   Visualization version   GIF version

Theorem nfccdeq 3713
Description: Variation of nfcdeq 3712 for classes. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-11 2154. (Revised by Gino Giotto, 19-May-2023.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfccdeq.1 𝑥𝐴
nfccdeq.2 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
nfccdeq 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem nfccdeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4 𝑥𝐴
21nfcri 2894 . . 3 𝑥 𝑧𝐴
3 eqid 2738 . . . . 5 𝑧 = 𝑧
43cdeqth 3702 . . . 4 CondEq(𝑥 = 𝑦𝑧 = 𝑧)
5 nfccdeq.2 . . . 4 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
64, 5cdeqel 3711 . . 3 CondEq(𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
72, 6nfcdeq 3712 . 2 (𝑧𝐴𝑧𝐵)
87eqriv 2735 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wnfc 2887  CondEqwcdeq 3698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-cleq 2730  df-clel 2816  df-nfc 2889  df-cdeq 3699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator