|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cdeqab1 | Structured version Visualization version GIF version | ||
| Description: Distribute conditional equality over abstraction. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| cdeqnot.1 | ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cdeqab1 | ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cdeqnot.1 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | cdeqri 3771 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 5 | 1, 2, 4 | cbvab 2813 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | 
| 6 | 5 | cdeqth 3772 | 1 ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 {cab 2713 CondEqwcdeq 3768 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-cdeq 3769 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |