MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqab1 Structured version   Visualization version   GIF version

Theorem cdeqab1 3718
Description: Distribute conditional equality over abstraction. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cdeqab1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cdeqab1
StepHypRef Expression
1 nfv 1916 . . 3 𝑦𝜑
2 nfv 1916 . . 3 𝑥𝜓
3 cdeqnot.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
43cdeqri 3712 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbvab 2812 . 2 {𝑥𝜑} = {𝑦𝜓}
65cdeqth 3713 1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  {cab 2713  CondEqwcdeq 3709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-cdeq 3710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator