Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cliftet Structured version   Visualization version   GIF version

Theorem cliftet 44318
Description: show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.)
Hypotheses
Ref Expression
cliftet.1 (𝜑𝜒)
cliftet.2 𝜃
Assertion
Ref Expression
cliftet (𝜃 ↔ ((𝜑𝜒) ∨ (𝜓 ∧ ¬ 𝜒)))

Proof of Theorem cliftet
StepHypRef Expression
1 cliftet.2 . 2 𝜃
2 cliftet.1 . . 3 (𝜑𝜒)
32orci 861 . 2 ((𝜑𝜒) ∨ (𝜓 ∧ ¬ 𝜒))
41, 32th 263 1 (𝜃 ↔ ((𝜑𝜒) ∨ (𝜓 ∧ ¬ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator