Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orci | Structured version Visualization version GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
orci | ⊢ (𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | pm2.24i 150 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
3 | 2 | orri 858 | 1 ⊢ (𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: truorfal 1577 trunortruOLD 1589 trunorfalOLD 1591 prid1g 4693 isso2i 5529 mpo0v 7337 0wdom 9259 nneo 12334 mnfltpnf 12791 bcpasc 13963 isumless 15485 binomfallfaclem2 15678 lcmfunsnlem2lem1 16271 srabaseOLD 20357 sraaddgOLD 20359 sramulrOLD 20361 m2detleib 21688 fctop 22062 cctop 22064 ovoliunnul 24576 vitalilem5 24681 logtayl 25720 bpos1 26336 usgrexmpldifpr 27528 cffldtocusgr 27717 pthdlem2 28037 inindif 30764 disjunsn 30834 circlemethhgt 32523 fmla0disjsuc 33260 0slt1s 33950 ifpimimb 41009 ifpimim 41014 binomcxplemnn0 41856 binomcxplemnotnn0 41863 salexct 43763 onenotinotbothi 44315 twonotinotbothi 44316 clifte 44317 cliftet 44318 paireqne 44851 sbgoldbo 45127 zlmodzxzldeplem 45727 ldepslinc 45738 line2x 45988 inlinecirc02plem 46020 alimp-surprise 46370 aacllem 46391 |
Copyright terms: Public domain | W3C validator |