![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orci | Structured version Visualization version GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
orci | ⊢ (𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | pm2.24i 150 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
3 | 2 | orri 861 | 1 ⊢ (𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: truorfal 1580 prid1g 4765 isso2i 5624 mpo0v 7493 0wdom 9565 nneo 12646 mnfltpnf 13106 bcpasc 14281 isumless 15791 binomfallfaclem2 15984 lcmfunsnlem2lem1 16575 srabaseOLD 20793 sraaddgOLD 20795 sramulrOLD 20797 m2detleib 22133 fctop 22507 cctop 22509 ovoliunnul 25024 vitalilem5 25129 logtayl 26168 bpos1 26786 0slt1s 27330 usgrexmpldifpr 28515 cffldtocusgr 28704 pthdlem2 29025 inindif 31754 disjunsn 31825 circlemethhgt 33655 fmla0disjsuc 34389 disjressuc2 37258 ifpimimb 42255 ifpimim 42260 binomcxplemnn0 43108 binomcxplemnotnn0 43115 salexct 45050 onenotinotbothi 45643 twonotinotbothi 45644 clifte 45645 cliftet 45646 paireqne 46179 sbgoldbo 46455 zlmodzxzldeplem 47179 ldepslinc 47190 line2x 47440 inlinecirc02plem 47472 alimp-surprise 47827 aacllem 47848 |
Copyright terms: Public domain | W3C validator |