![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orci | Structured version Visualization version GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
orci | ⊢ (𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | pm2.24i 150 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
3 | 2 | orri 860 | 1 ⊢ (𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: truorfal 1579 prid1g 4763 isso2i 5622 mpo0v 7489 0wdom 9561 nneo 12642 mnfltpnf 13102 bcpasc 14277 isumless 15787 binomfallfaclem2 15980 lcmfunsnlem2lem1 16571 srabaseOLD 20785 sraaddgOLD 20787 sramulrOLD 20789 m2detleib 22124 fctop 22498 cctop 22500 ovoliunnul 25015 vitalilem5 25120 logtayl 26159 bpos1 26775 0slt1s 27319 usgrexmpldifpr 28504 cffldtocusgr 28693 pthdlem2 29014 inindif 31741 disjunsn 31812 circlemethhgt 33643 fmla0disjsuc 34377 disjressuc2 37246 ifpimimb 42240 ifpimim 42245 binomcxplemnn0 43093 binomcxplemnotnn0 43100 salexct 45036 onenotinotbothi 45629 twonotinotbothi 45630 clifte 45631 cliftet 45632 paireqne 46165 sbgoldbo 46441 zlmodzxzldeplem 47132 ldepslinc 47143 line2x 47393 inlinecirc02plem 47425 alimp-surprise 47780 aacllem 47801 |
Copyright terms: Public domain | W3C validator |