Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con2bii2 Structured version   Visualization version   GIF version

Theorem con2bii2 35504
Description: A contraposition inference. (Contributed by ML, 18-Oct-2020.)
Hypothesis
Ref Expression
con2bii2.1 (𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
con2bii2 𝜑𝜓)

Proof of Theorem con2bii2
StepHypRef Expression
1 con2bii2.1 . . 3 (𝜑 ↔ ¬ 𝜓)
21con2bii 358 . 2 (𝜓 ↔ ¬ 𝜑)
32bicomi 223 1 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  fvineqsneq  35583
  Copyright terms: Public domain W3C validator