Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvineqsneq Structured version   Visualization version   GIF version

Theorem fvineqsneq 37378
Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 28-Mar-2021.)
Assertion
Ref Expression
fvineqsneq (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑍 ⊆ ran 𝐹𝐴 𝑍)) → 𝑍 = ran 𝐹)
Distinct variable groups:   𝐴,𝑝   𝐹,𝑝   𝑍,𝑝

Proof of Theorem fvineqsneq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pssnel 4494 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ⊊ ran 𝐹 → ∃𝑥(𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥𝑍))
21adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥(𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥𝑍))
3 df-rex 3077 . . . . . . . . . . . . . . . . . . 19 (∃𝑥 ∈ ran 𝐹 ¬ 𝑥𝑍 ↔ ∃𝑥(𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥𝑍))
42, 3sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥 ∈ ran 𝐹 ¬ 𝑥𝑍)
5 fnrnfv 6981 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑥 ∣ ∃𝑝𝐴 𝑥 = (𝐹𝑝)})
65eqabrd 2887 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑝𝐴 𝑥 = (𝐹𝑝)))
76biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 → ∃𝑝𝐴 𝑥 = (𝐹𝑝)))
87ralrimiv 3151 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn 𝐴 → ∀𝑥 ∈ ran 𝐹𝑝𝐴 𝑥 = (𝐹𝑝))
98adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑥 ∈ ran 𝐹𝑝𝐴 𝑥 = (𝐹𝑝))
109adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑥 ∈ ran 𝐹𝑝𝐴 𝑥 = (𝐹𝑝))
11 r19.29r 3122 . . . . . . . . . . . . . . . . . 18 ((∃𝑥 ∈ ran 𝐹 ¬ 𝑥𝑍 ∧ ∀𝑥 ∈ ran 𝐹𝑝𝐴 𝑥 = (𝐹𝑝)) → ∃𝑥 ∈ ran 𝐹𝑥𝑍 ∧ ∃𝑝𝐴 𝑥 = (𝐹𝑝)))
124, 10, 11syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥 ∈ ran 𝐹𝑥𝑍 ∧ ∃𝑝𝐴 𝑥 = (𝐹𝑝)))
13 nfra1 3290 . . . . . . . . . . . . . . . . . . . . . 22 𝑝𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}
14 rsp 3253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴 → ((𝐹𝑝) ∩ 𝐴) = {𝑝}))
15 vsnid 4685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑝 ∈ {𝑝}
16 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝 ∈ ((𝐹𝑝) ∩ 𝐴) ↔ 𝑝 ∈ {𝑝}))
1715, 16mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → 𝑝 ∈ ((𝐹𝑝) ∩ 𝐴))
1817elin1d 4227 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑝) ∩ 𝐴) = {𝑝} → 𝑝 ∈ (𝐹𝑝))
1914, 18syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴𝑝 ∈ (𝐹𝑝)))
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} ∧ 𝑥 = (𝐹𝑝)) → (𝑝𝐴𝑝 ∈ (𝐹𝑝)))
21 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝐹𝑝) → (𝑝𝑥𝑝 ∈ (𝐹𝑝)))
2221adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} ∧ 𝑥 = (𝐹𝑝)) → (𝑝𝑥𝑝 ∈ (𝐹𝑝)))
2320, 22sylibrd 259 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} ∧ 𝑥 = (𝐹𝑝)) → (𝑝𝐴𝑝𝑥))
2423ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑥 = (𝐹𝑝) → (𝑝𝐴𝑝𝑥)))
2524com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (𝑝𝐴 → (𝑥 = (𝐹𝑝) → 𝑝𝑥)))
2613, 25reximdai 3267 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝} → (∃𝑝𝐴 𝑥 = (𝐹𝑝) → ∃𝑝𝐴 𝑝𝑥))
2726adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (∃𝑝𝐴 𝑥 = (𝐹𝑝) → ∃𝑝𝐴 𝑝𝑥))
2827adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∃𝑝𝐴 𝑥 = (𝐹𝑝) → ∃𝑝𝐴 𝑝𝑥))
2928anim2d 611 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ((¬ 𝑥𝑍 ∧ ∃𝑝𝐴 𝑥 = (𝐹𝑝)) → (¬ 𝑥𝑍 ∧ ∃𝑝𝐴 𝑝𝑥)))
3029reximdv 3176 . . . . . . . . . . . . . . . . 17 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∃𝑥 ∈ ran 𝐹𝑥𝑍 ∧ ∃𝑝𝐴 𝑥 = (𝐹𝑝)) → ∃𝑥 ∈ ran 𝐹𝑥𝑍 ∧ ∃𝑝𝐴 𝑝𝑥)))
3112, 30mpd 15 . . . . . . . . . . . . . . . 16 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥 ∈ ran 𝐹𝑥𝑍 ∧ ∃𝑝𝐴 𝑝𝑥))
32 ancom 460 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑥𝑍 ∧ ∃𝑝𝐴 𝑝𝑥) ↔ (∃𝑝𝐴 𝑝𝑥 ∧ ¬ 𝑥𝑍))
33 r19.41v 3195 . . . . . . . . . . . . . . . . . 18 (∃𝑝𝐴 (𝑝𝑥 ∧ ¬ 𝑥𝑍) ↔ (∃𝑝𝐴 𝑝𝑥 ∧ ¬ 𝑥𝑍))
3432, 33bitr4i 278 . . . . . . . . . . . . . . . . 17 ((¬ 𝑥𝑍 ∧ ∃𝑝𝐴 𝑝𝑥) ↔ ∃𝑝𝐴 (𝑝𝑥 ∧ ¬ 𝑥𝑍))
3534rexbii 3100 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ ran 𝐹𝑥𝑍 ∧ ∃𝑝𝐴 𝑝𝑥) ↔ ∃𝑥 ∈ ran 𝐹𝑝𝐴 (𝑝𝑥 ∧ ¬ 𝑥𝑍))
3631, 35sylib 218 . . . . . . . . . . . . . . 15 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥 ∈ ran 𝐹𝑝𝐴 (𝑝𝑥 ∧ ¬ 𝑥𝑍))
37 rexcom 3296 . . . . . . . . . . . . . . 15 (∃𝑝𝐴𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) ↔ ∃𝑥 ∈ ran 𝐹𝑝𝐴 (𝑝𝑥 ∧ ¬ 𝑥𝑍))
3836, 37sylibr 234 . . . . . . . . . . . . . 14 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝𝐴𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍))
39 nfre1 3291 . . . . . . . . . . . . . . . . 17 𝑥𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍)
403919.3 2203 . . . . . . . . . . . . . . . 16 (∀𝑥𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) ↔ ∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍))
41 alral 3081 . . . . . . . . . . . . . . . 16 (∀𝑥𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → ∀𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍))
4240, 41sylbir 235 . . . . . . . . . . . . . . 15 (∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → ∀𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍))
4342reximi 3090 . . . . . . . . . . . . . 14 (∃𝑝𝐴𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → ∃𝑝𝐴𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍))
4438, 43syl 17 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝𝐴𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍))
45 nfv 1913 . . . . . . . . . . . . . . . 16 𝑝 𝐹 Fn 𝐴
4645, 13nfan 1898 . . . . . . . . . . . . . . 15 𝑝(𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝})
47 nfv 1913 . . . . . . . . . . . . . . 15 𝑝 𝑍 ⊊ ran 𝐹
4846, 47nfan 1898 . . . . . . . . . . . . . 14 𝑝((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹)
49 nfv 1913 . . . . . . . . . . . . . . . 16 𝑥(((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ 𝑝𝐴)
50 fvineqsneu 37377 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑝𝐴 ∃!𝑥 ∈ ran 𝐹 𝑝𝑥)
5150adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑝𝐴 ∃!𝑥 ∈ ran 𝐹 𝑝𝑥)
52 rsp 3253 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑝𝐴 ∃!𝑥 ∈ ran 𝐹 𝑝𝑥 → (𝑝𝐴 → ∃!𝑥 ∈ ran 𝐹 𝑝𝑥))
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (𝑝𝐴 → ∃!𝑥 ∈ ran 𝐹 𝑝𝑥))
5453adantrd 491 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ((𝑝𝐴𝑥 ∈ ran 𝐹) → ∃!𝑥 ∈ ran 𝐹 𝑝𝑥))
5554imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ (𝑝𝐴𝑥 ∈ ran 𝐹)) → ∃!𝑥 ∈ ran 𝐹 𝑝𝑥)
56 reupick3 4349 . . . . . . . . . . . . . . . . . . . . . 22 ((∃!𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) ∧ 𝑥 ∈ ran 𝐹) → (𝑝𝑥 → ¬ 𝑥𝑍))
57563expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((∃!𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍)) ∧ 𝑥 ∈ ran 𝐹) → (𝑝𝑥 → ¬ 𝑥𝑍))
5857expcom 413 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ran 𝐹 → ((∃!𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍)) → (𝑝𝑥 → ¬ 𝑥𝑍)))
5958adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑝𝐴𝑥 ∈ ran 𝐹) → ((∃!𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍)) → (𝑝𝑥 → ¬ 𝑥𝑍)))
6059adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ (𝑝𝐴𝑥 ∈ ran 𝐹)) → ((∃!𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍)) → (𝑝𝑥 → ¬ 𝑥𝑍)))
6155, 60mpand 694 . . . . . . . . . . . . . . . . 17 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ (𝑝𝐴𝑥 ∈ ran 𝐹)) → (∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍)))
6261expr 456 . . . . . . . . . . . . . . . 16 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ 𝑝𝐴) → (𝑥 ∈ ran 𝐹 → (∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍))))
6349, 62ralrimi 3263 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ 𝑝𝐴) → ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍)))
6463ex 412 . . . . . . . . . . . . . 14 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (𝑝𝐴 → ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍))))
6548, 64ralrimi 3263 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑝𝐴𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍)))
66 r19.29r 3122 . . . . . . . . . . . . 13 ((∃𝑝𝐴𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) ∧ ∀𝑝𝐴𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍))) → ∃𝑝𝐴 (∀𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) ∧ ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍))))
6744, 65, 66syl2anc 583 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝𝐴 (∀𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) ∧ ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍))))
68 ralim 3092 . . . . . . . . . . . . . 14 (∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍)) → (∀𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → ∀𝑥 ∈ ran 𝐹(𝑝𝑥 → ¬ 𝑥𝑍)))
6968impcom 407 . . . . . . . . . . . . 13 ((∀𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) ∧ ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍))) → ∀𝑥 ∈ ran 𝐹(𝑝𝑥 → ¬ 𝑥𝑍))
7069reximi 3090 . . . . . . . . . . . 12 (∃𝑝𝐴 (∀𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) ∧ ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝𝑥 ∧ ¬ 𝑥𝑍) → (𝑝𝑥 → ¬ 𝑥𝑍))) → ∃𝑝𝐴𝑥 ∈ ran 𝐹(𝑝𝑥 → ¬ 𝑥𝑍))
7167, 70syl 17 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝𝐴𝑥 ∈ ran 𝐹(𝑝𝑥 → ¬ 𝑥𝑍))
72 con2b 359 . . . . . . . . . . . . . . 15 ((𝑝𝑥 → ¬ 𝑥𝑍) ↔ (𝑥𝑍 → ¬ 𝑝𝑥))
7372ralbii 3099 . . . . . . . . . . . . . 14 (∀𝑥 ∈ ran 𝐹(𝑝𝑥 → ¬ 𝑥𝑍) ↔ ∀𝑥 ∈ ran 𝐹(𝑥𝑍 → ¬ 𝑝𝑥))
74 df-ral 3068 . . . . . . . . . . . . . 14 (∀𝑥 ∈ ran 𝐹(𝑥𝑍 → ¬ 𝑝𝑥) ↔ ∀𝑥(𝑥 ∈ ran 𝐹 → (𝑥𝑍 → ¬ 𝑝𝑥)))
75 bi2.04 387 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ran 𝐹 → (𝑥𝑍 → ¬ 𝑝𝑥)) ↔ (𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)))
7675albii 1817 . . . . . . . . . . . . . 14 (∀𝑥(𝑥 ∈ ran 𝐹 → (𝑥𝑍 → ¬ 𝑝𝑥)) ↔ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)))
7773, 74, 763bitri 297 . . . . . . . . . . . . 13 (∀𝑥 ∈ ran 𝐹(𝑝𝑥 → ¬ 𝑥𝑍) ↔ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)))
7877a1i 11 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∀𝑥 ∈ ran 𝐹(𝑝𝑥 → ¬ 𝑥𝑍) ↔ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))))
7948, 78rexbid 3280 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∃𝑝𝐴𝑥 ∈ ran 𝐹(𝑝𝑥 → ¬ 𝑥𝑍) ↔ ∃𝑝𝐴𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))))
8071, 79mpbid 232 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝𝐴𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)))
81 nfv 1913 . . . . . . . . . . . . . . 15 𝑥((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹)
82 nfa1 2152 . . . . . . . . . . . . . . 15 𝑥𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))
8381, 82nfan 1898 . . . . . . . . . . . . . 14 𝑥(((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)))
84 pssss 4121 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ⊊ ran 𝐹𝑍 ⊆ ran 𝐹)
85 df-ss 3993 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ⊆ ran 𝐹 ↔ ∀𝑥(𝑥𝑍𝑥 ∈ ran 𝐹))
8684, 85sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝑍 ⊊ ran 𝐹 → ∀𝑥(𝑥𝑍𝑥 ∈ ran 𝐹))
8786adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑥(𝑥𝑍𝑥 ∈ ran 𝐹))
88 df-ral 3068 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝑍 𝑥 ∈ ran 𝐹 ↔ ∀𝑥(𝑥𝑍𝑥 ∈ ran 𝐹))
8987, 88sylibr 234 . . . . . . . . . . . . . . . . 17 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑥𝑍 𝑥 ∈ ran 𝐹)
9089adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))) → ∀𝑥𝑍 𝑥 ∈ ran 𝐹)
91 rsp 3253 . . . . . . . . . . . . . . . 16 (∀𝑥𝑍 𝑥 ∈ ran 𝐹 → (𝑥𝑍𝑥 ∈ ran 𝐹))
9290, 91syl 17 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))) → (𝑥𝑍𝑥 ∈ ran 𝐹))
93 df-ral 3068 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝑍 (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥) ↔ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)))
9493biimpri 228 . . . . . . . . . . . . . . . . 17 (∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)) → ∀𝑥𝑍 (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))
9594adantl 481 . . . . . . . . . . . . . . . 16 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))) → ∀𝑥𝑍 (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))
96 rsp 3253 . . . . . . . . . . . . . . . 16 (∀𝑥𝑍 (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥) → (𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)))
9795, 96syl 17 . . . . . . . . . . . . . . 15 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))) → (𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)))
9892, 97mpdd 43 . . . . . . . . . . . . . 14 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))) → (𝑥𝑍 → ¬ 𝑝𝑥))
9983, 98ralrimi 3263 . . . . . . . . . . . . 13 ((((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥))) → ∀𝑥𝑍 ¬ 𝑝𝑥)
10099ex 412 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)) → ∀𝑥𝑍 ¬ 𝑝𝑥))
101100a1d 25 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (𝑝𝐴 → (∀𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)) → ∀𝑥𝑍 ¬ 𝑝𝑥)))
10248, 101reximdai 3267 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∃𝑝𝐴𝑥(𝑥𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥)) → ∃𝑝𝐴𝑥𝑍 ¬ 𝑝𝑥))
10380, 102mpd 15 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝𝐴𝑥𝑍 ¬ 𝑝𝑥)
104 ralnex 3078 . . . . . . . . . 10 (∀𝑥𝑍 ¬ 𝑝𝑥 ↔ ¬ ∃𝑥𝑍 𝑝𝑥)
105104rexbii 3100 . . . . . . . . 9 (∃𝑝𝐴𝑥𝑍 ¬ 𝑝𝑥 ↔ ∃𝑝𝐴 ¬ ∃𝑥𝑍 𝑝𝑥)
106103, 105sylib 218 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝𝐴 ¬ ∃𝑥𝑍 𝑝𝑥)
107 eluni2 4935 . . . . . . . . . 10 (𝑝 𝑍 ↔ ∃𝑥𝑍 𝑝𝑥)
108107notbii 320 . . . . . . . . 9 𝑝 𝑍 ↔ ¬ ∃𝑥𝑍 𝑝𝑥)
109108rexbii 3100 . . . . . . . 8 (∃𝑝𝐴 ¬ 𝑝 𝑍 ↔ ∃𝑝𝐴 ¬ ∃𝑥𝑍 𝑝𝑥)
110106, 109sylibr 234 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝𝐴 ¬ 𝑝 𝑍)
111 dfss3 3997 . . . . . . . . 9 (𝐴 𝑍 ↔ ∀𝑝𝐴 𝑝 𝑍)
112 dfral2 3105 . . . . . . . . 9 (∀𝑝𝐴 𝑝 𝑍 ↔ ¬ ∃𝑝𝐴 ¬ 𝑝 𝑍)
113111, 112bitri 275 . . . . . . . 8 (𝐴 𝑍 ↔ ¬ ∃𝑝𝐴 ¬ 𝑝 𝑍)
114113con2bii2 37299 . . . . . . 7 𝐴 𝑍 ↔ ∃𝑝𝐴 ¬ 𝑝 𝑍)
115110, 114sylibr 234 . . . . . 6 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ¬ 𝐴 𝑍)
116115ex 412 . . . . 5 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑍 ⊊ ran 𝐹 → ¬ 𝐴 𝑍))
117116con2d 134 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝐴 𝑍 → ¬ 𝑍 ⊊ ran 𝐹))
118 npss 4136 . . . 4 𝑍 ⊊ ran 𝐹 ↔ (𝑍 ⊆ ran 𝐹𝑍 = ran 𝐹))
119117, 118imbitrdi 251 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝐴 𝑍 → (𝑍 ⊆ ran 𝐹𝑍 = ran 𝐹)))
120119com23 86 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) → (𝑍 ⊆ ran 𝐹 → (𝐴 𝑍𝑍 = ran 𝐹)))
121120imp32 418 1 (((𝐹 Fn 𝐴 ∧ ∀𝑝𝐴 ((𝐹𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑍 ⊆ ran 𝐹𝐴 𝑍)) → 𝑍 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  cin 3975  wss 3976  wpss 3977  {csn 4648   cuni 4931  ran crn 5701   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581
This theorem is referenced by:  pibt2  37383
  Copyright terms: Public domain W3C validator