| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pssnel 4470 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑍 ⊊ ran 𝐹 → ∃𝑥(𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 2 | 1 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥(𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 3 |  | df-rex 3070 | . . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑥 ∈ ran
𝐹 ¬ 𝑥 ∈ 𝑍 ↔ ∃𝑥(𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 4 | 2, 3 | sylibr 234 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥 ∈ ran 𝐹 ¬ 𝑥 ∈ 𝑍) | 
| 5 |  | fnrnfv 6967 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑥 ∣ ∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝)}) | 
| 6 | 5 | eqabrd 2883 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝))) | 
| 7 | 6 | biimpd 229 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 → ∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝))) | 
| 8 | 7 | ralrimiv 3144 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Fn 𝐴 → ∀𝑥 ∈ ran 𝐹∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝)) | 
| 9 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑥 ∈ ran 𝐹∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝)) | 
| 10 | 9 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑥 ∈ ran 𝐹∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝)) | 
| 11 |  | r19.29r 3115 | . . . . . . . . . . . . . . . . . 18
⊢
((∃𝑥 ∈
ran 𝐹 ¬ 𝑥 ∈ 𝑍 ∧ ∀𝑥 ∈ ran 𝐹∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝)) → ∃𝑥 ∈ ran 𝐹(¬ 𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝))) | 
| 12 | 4, 10, 11 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥 ∈ ran 𝐹(¬ 𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝))) | 
| 13 |  | nfra1 3283 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑝∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} | 
| 14 |  | rsp 3246 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑝 ∈ 𝐴 → ((𝐹‘𝑝) ∩ 𝐴) = {𝑝})) | 
| 15 |  | vsnid 4662 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝑝 ∈ {𝑝} | 
| 16 |  | eleq2 2829 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑝 ∈ ((𝐹‘𝑝) ∩ 𝐴) ↔ 𝑝 ∈ {𝑝})) | 
| 17 | 15, 16 | mpbiri 258 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → 𝑝 ∈ ((𝐹‘𝑝) ∩ 𝐴)) | 
| 18 | 17 | elin1d 4203 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → 𝑝 ∈ (𝐹‘𝑝)) | 
| 19 | 14, 18 | syl6 35 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑝 ∈ 𝐴 → 𝑝 ∈ (𝐹‘𝑝))) | 
| 20 | 19 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} ∧ 𝑥 = (𝐹‘𝑝)) → (𝑝 ∈ 𝐴 → 𝑝 ∈ (𝐹‘𝑝))) | 
| 21 |  | eleq2 2829 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (𝐹‘𝑝) → (𝑝 ∈ 𝑥 ↔ 𝑝 ∈ (𝐹‘𝑝))) | 
| 22 | 21 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} ∧ 𝑥 = (𝐹‘𝑝)) → (𝑝 ∈ 𝑥 ↔ 𝑝 ∈ (𝐹‘𝑝))) | 
| 23 | 20, 22 | sylibrd 259 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} ∧ 𝑥 = (𝐹‘𝑝)) → (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝑥)) | 
| 24 | 23 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑥 = (𝐹‘𝑝) → (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝑥))) | 
| 25 | 24 | com23 86 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (𝑝 ∈ 𝐴 → (𝑥 = (𝐹‘𝑝) → 𝑝 ∈ 𝑥))) | 
| 26 | 13, 25 | reximdai 3260 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑝 ∈
𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝} → (∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝) → ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥)) | 
| 27 | 26 | adantl 481 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝) → ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥)) | 
| 28 | 27 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝) → ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥)) | 
| 29 | 28 | anim2d 612 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ((¬ 𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝)) → (¬ 𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥))) | 
| 30 | 29 | reximdv 3169 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∃𝑥 ∈ ran 𝐹(¬ 𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑥 = (𝐹‘𝑝)) → ∃𝑥 ∈ ran 𝐹(¬ 𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥))) | 
| 31 | 12, 30 | mpd 15 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥 ∈ ran 𝐹(¬ 𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥)) | 
| 32 |  | ancom 460 | . . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥) ↔ (∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 33 |  | r19.41v 3188 | . . . . . . . . . . . . . . . . . 18
⊢
(∃𝑝 ∈
𝐴 (𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ↔ (∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 34 | 32, 33 | bitr4i 278 | . . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥) ↔ ∃𝑝 ∈ 𝐴 (𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 35 | 34 | rexbii 3093 | . . . . . . . . . . . . . . . 16
⊢
(∃𝑥 ∈ ran
𝐹(¬ 𝑥 ∈ 𝑍 ∧ ∃𝑝 ∈ 𝐴 𝑝 ∈ 𝑥) ↔ ∃𝑥 ∈ ran 𝐹∃𝑝 ∈ 𝐴 (𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 36 | 31, 35 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑥 ∈ ran 𝐹∃𝑝 ∈ 𝐴 (𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 37 |  | rexcom 3289 | . . . . . . . . . . . . . . 15
⊢
(∃𝑝 ∈
𝐴 ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ↔ ∃𝑥 ∈ ran 𝐹∃𝑝 ∈ 𝐴 (𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 38 | 36, 37 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝 ∈ 𝐴 ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 39 |  | nfre1 3284 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) | 
| 40 | 39 | 19.3 2201 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑥∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ↔ ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 41 |  | alral 3074 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑥∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → ∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 42 | 40, 41 | sylbir 235 | . . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈ ran
𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → ∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 43 | 42 | reximi 3083 | . . . . . . . . . . . . . 14
⊢
(∃𝑝 ∈
𝐴 ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → ∃𝑝 ∈ 𝐴 ∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 44 | 38, 43 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝 ∈ 𝐴 ∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) | 
| 45 |  | nfv 1913 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑝 𝐹 Fn 𝐴 | 
| 46 | 45, 13 | nfan 1898 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑝(𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) | 
| 47 |  | nfv 1913 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑝 𝑍 ⊊ ran 𝐹 | 
| 48 | 46, 47 | nfan 1898 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑝((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) | 
| 49 |  | nfv 1913 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ 𝑝 ∈ 𝐴) | 
| 50 |  | fvineqsneu 37413 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → ∀𝑝 ∈ 𝐴 ∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥) | 
| 51 | 50 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑝 ∈ 𝐴 ∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥) | 
| 52 |  | rsp 3246 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑝 ∈
𝐴 ∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 → (𝑝 ∈ 𝐴 → ∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥)) | 
| 53 | 51, 52 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (𝑝 ∈ 𝐴 → ∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥)) | 
| 54 | 53 | adantrd 491 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ((𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹) → ∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥)) | 
| 55 | 54 | imp 406 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ (𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹)) → ∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥) | 
| 56 |  | reupick3 4329 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((∃!𝑥 ∈
ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ∧ 𝑥 ∈ ran 𝐹) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)) | 
| 57 | 56 | 3expa 1118 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((∃!𝑥 ∈
ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) ∧ 𝑥 ∈ ran 𝐹) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)) | 
| 58 | 57 | expcom 413 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ran 𝐹 → ((∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) | 
| 59 | 58 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹) → ((∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) | 
| 60 | 59 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ (𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹)) → ((∃!𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍)) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) | 
| 61 | 55, 60 | mpand 695 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ (𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹)) → (∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) | 
| 62 | 61 | expr 456 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ 𝑝 ∈ 𝐴) → (𝑥 ∈ ran 𝐹 → (∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)))) | 
| 63 | 49, 62 | ralrimi 3256 | . . . . . . . . . . . . . . 15
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ 𝑝 ∈ 𝐴) → ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) | 
| 64 | 63 | ex 412 | . . . . . . . . . . . . . 14
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (𝑝 ∈ 𝐴 → ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)))) | 
| 65 | 48, 64 | ralrimi 3256 | . . . . . . . . . . . . 13
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑝 ∈ 𝐴 ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) | 
| 66 |  | r19.29r 3115 | . . . . . . . . . . . . 13
⊢
((∃𝑝 ∈
𝐴 ∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ∧ ∀𝑝 ∈ 𝐴 ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) → ∃𝑝 ∈ 𝐴 (∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ∧ ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)))) | 
| 67 | 44, 65, 66 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝 ∈ 𝐴 (∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ∧ ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)))) | 
| 68 |  | ralim 3085 | . . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)) → (∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → ∀𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) | 
| 69 | 68 | impcom 407 | . . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ∧ ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) → ∀𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)) | 
| 70 | 69 | reximi 3083 | . . . . . . . . . . . 12
⊢
(∃𝑝 ∈
𝐴 (∀𝑥 ∈ ran 𝐹∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) ∧ ∀𝑥 ∈ ran 𝐹(∃𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍) → (𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍))) → ∃𝑝 ∈ 𝐴 ∀𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)) | 
| 71 | 67, 70 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝 ∈ 𝐴 ∀𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍)) | 
| 72 |  | con2b 359 | . . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍) ↔ (𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥)) | 
| 73 | 72 | ralbii 3092 | . . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
ran 𝐹(𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍) ↔ ∀𝑥 ∈ ran 𝐹(𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥)) | 
| 74 |  | df-ral 3061 | . . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
ran 𝐹(𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ ran 𝐹 → (𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥))) | 
| 75 |  | bi2.04 387 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ran 𝐹 → (𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥)) ↔ (𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) | 
| 76 | 75 | albii 1818 | . . . . . . . . . . . . . 14
⊢
(∀𝑥(𝑥 ∈ ran 𝐹 → (𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥)) ↔ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) | 
| 77 | 73, 74, 76 | 3bitri 297 | . . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
ran 𝐹(𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍) ↔ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) | 
| 78 | 77 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∀𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍) ↔ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)))) | 
| 79 | 48, 78 | rexbid 3273 | . . . . . . . . . . 11
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∃𝑝 ∈ 𝐴 ∀𝑥 ∈ ran 𝐹(𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍) ↔ ∃𝑝 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)))) | 
| 80 | 71, 79 | mpbid 232 | . . . . . . . . . 10
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) | 
| 81 |  | nfv 1913 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) | 
| 82 |  | nfa1 2150 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)) | 
| 83 | 81, 82 | nfan 1898 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) | 
| 84 |  | pssss 4097 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑍 ⊊ ran 𝐹 → 𝑍 ⊆ ran 𝐹) | 
| 85 |  | df-ss 3967 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑍 ⊆ ran 𝐹 ↔ ∀𝑥(𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹)) | 
| 86 | 84, 85 | sylib 218 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑍 ⊊ ran 𝐹 → ∀𝑥(𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹)) | 
| 87 | 86 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑥(𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹)) | 
| 88 |  | df-ral 3061 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝑍 𝑥 ∈ ran 𝐹 ↔ ∀𝑥(𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹)) | 
| 89 | 87, 88 | sylibr 234 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∀𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹) | 
| 90 | 89 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) → ∀𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹) | 
| 91 |  | rsp 3246 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑍 𝑥 ∈ ran 𝐹 → (𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹)) | 
| 92 | 90, 91 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) → (𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹)) | 
| 93 |  | df-ral 3061 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝑍 (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) | 
| 94 | 93 | biimpri 228 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)) → ∀𝑥 ∈ 𝑍 (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)) | 
| 95 | 94 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) → ∀𝑥 ∈ 𝑍 (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)) | 
| 96 |  | rsp 3246 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑍 (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥) → (𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) | 
| 97 | 95, 96 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) → (𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) | 
| 98 | 92, 97 | mpdd 43 | . . . . . . . . . . . . . 14
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) → (𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥)) | 
| 99 | 83, 98 | ralrimi 3256 | . . . . . . . . . . . . 13
⊢ ((((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) ∧ ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥))) → ∀𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥) | 
| 100 | 99 | ex 412 | . . . . . . . . . . . 12
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)) → ∀𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥)) | 
| 101 | 100 | a1d 25 | . . . . . . . . . . 11
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (𝑝 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)) → ∀𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥))) | 
| 102 | 48, 101 | reximdai 3260 | . . . . . . . . . 10
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → (∃𝑝 ∈ 𝐴 ∀𝑥(𝑥 ∈ 𝑍 → (𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥)) → ∃𝑝 ∈ 𝐴 ∀𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥)) | 
| 103 | 80, 102 | mpd 15 | . . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝 ∈ 𝐴 ∀𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥) | 
| 104 |  | ralnex 3071 | . . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑍 ¬ 𝑝 ∈ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝑍 𝑝 ∈ 𝑥) | 
| 105 | 104 | rexbii 3093 | . . . . . . . . 9
⊢
(∃𝑝 ∈
𝐴 ∀𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ↔ ∃𝑝 ∈ 𝐴 ¬ ∃𝑥 ∈ 𝑍 𝑝 ∈ 𝑥) | 
| 106 | 103, 105 | sylib 218 | . . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝 ∈ 𝐴 ¬ ∃𝑥 ∈ 𝑍 𝑝 ∈ 𝑥) | 
| 107 |  | eluni2 4910 | . . . . . . . . . 10
⊢ (𝑝 ∈ ∪ 𝑍
↔ ∃𝑥 ∈
𝑍 𝑝 ∈ 𝑥) | 
| 108 | 107 | notbii 320 | . . . . . . . . 9
⊢ (¬
𝑝 ∈ ∪ 𝑍
↔ ¬ ∃𝑥
∈ 𝑍 𝑝 ∈ 𝑥) | 
| 109 | 108 | rexbii 3093 | . . . . . . . 8
⊢
(∃𝑝 ∈
𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ↔ ∃𝑝 ∈ 𝐴 ¬ ∃𝑥 ∈ 𝑍 𝑝 ∈ 𝑥) | 
| 110 | 106, 109 | sylibr 234 | . . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍) | 
| 111 |  | dfss3 3971 | . . . . . . . . 9
⊢ (𝐴 ⊆ ∪ 𝑍
↔ ∀𝑝 ∈
𝐴 𝑝 ∈ ∪ 𝑍) | 
| 112 |  | dfral2 3098 | . . . . . . . . 9
⊢
(∀𝑝 ∈
𝐴 𝑝 ∈ ∪ 𝑍 ↔ ¬ ∃𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍) | 
| 113 | 111, 112 | bitri 275 | . . . . . . . 8
⊢ (𝐴 ⊆ ∪ 𝑍
↔ ¬ ∃𝑝
∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍) | 
| 114 | 113 | con2bii2 37335 | . . . . . . 7
⊢ (¬
𝐴 ⊆ ∪ 𝑍
↔ ∃𝑝 ∈
𝐴 ¬ 𝑝 ∈ ∪ 𝑍) | 
| 115 | 110, 114 | sylibr 234 | . . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ 𝑍 ⊊ ran 𝐹) → ¬ 𝐴 ⊆ ∪ 𝑍) | 
| 116 | 115 | ex 412 | . . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑍 ⊊ ran 𝐹 → ¬ 𝐴 ⊆ ∪ 𝑍)) | 
| 117 | 116 | con2d 134 | . . . 4
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝐴 ⊆ ∪ 𝑍 → ¬ 𝑍 ⊊ ran 𝐹)) | 
| 118 |  | npss 4112 | . . . 4
⊢ (¬
𝑍 ⊊ ran 𝐹 ↔ (𝑍 ⊆ ran 𝐹 → 𝑍 = ran 𝐹)) | 
| 119 | 117, 118 | imbitrdi 251 | . . 3
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝐴 ⊆ ∪ 𝑍 → (𝑍 ⊆ ran 𝐹 → 𝑍 = ran 𝐹))) | 
| 120 | 119 | com23 86 | . 2
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) → (𝑍 ⊆ ran 𝐹 → (𝐴 ⊆ ∪ 𝑍 → 𝑍 = ran 𝐹))) | 
| 121 | 120 | imp32 418 | 1
⊢ (((𝐹 Fn 𝐴 ∧ ∀𝑝 ∈ 𝐴 ((𝐹‘𝑝) ∩ 𝐴) = {𝑝}) ∧ (𝑍 ⊆ ran 𝐹 ∧ 𝐴 ⊆ ∪ 𝑍)) → 𝑍 = ran 𝐹) |