| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vtoclefex | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| vtoclefex.1 | ⊢ Ⅎ𝑥𝜑 |
| vtoclefex.3 | ⊢ (𝑥 = 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclefex | ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclefex.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | vtoclefex.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
| 3 | 2 | ax-gen 1796 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → 𝜑) |
| 4 | vtoclegft 3539 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) | |
| 5 | 1, 3, 4 | mp3an23 1455 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: finxpreclem2 37434 |
| Copyright terms: Public domain | W3C validator |