Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vtoclefex | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
vtoclefex.1 | ⊢ Ⅎ𝑥𝜑 |
vtoclefex.3 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtoclefex | ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclefex.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | vtoclefex.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
3 | 2 | ax-gen 1803 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → 𝜑) |
4 | vtoclegft 3513 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) | |
5 | 1, 3, 4 | mp3an23 1455 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-12 2177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-clel 2818 |
This theorem is referenced by: finxpreclem2 35467 |
Copyright terms: Public domain | W3C validator |