| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 987 pm4.55 989 oran 991 nanan 1493 xnor 1513 xorneg 1523 noror 1533 alnex 1781 exnal 1827 exnalimn 1844 2exnexn 1846 nne 2929 dfrex2 3056 rexnal 3081 r2exlem 3118 ddif 4094 dfun2 4223 dfin2 4224 difin 4225 disj4 4412 snnzb 4672 eqsnuniex 5303 onuninsuci 7780 poxp2 8083 frxp3 8091 omopthi 8586 dif1enlem 9080 dif1enlemOLD 9081 dfsup2 9353 rankxplim3 9796 alephgeom 9995 fin1a2lem7 10319 fin41 10357 reclem2pr 10961 ltnlei 11255 divalglem8 16329 f1omvdco3 19346 elcls 22976 ist1-2 23250 fin1aufil 23835 dchrelbas3 27165 sltval2 27584 sltres 27590 nosepeq 27613 nolt02o 27623 nogt01o 27624 nosupbnd2lem1 27643 noinfbnd2lem1 27658 madebdaylemlrcut 27831 onscutlt 28188 tgdim01 28470 axcontlem12 28938 avril1 30425 n0nsnel 32477 creq0 32692 axregs 35073 onvf1odlem1 35075 dftr6 35723 dfon3 35865 dffun10 35887 brub 35927 bj-bixor 36564 bj-modal4e 36688 con2bii2 37306 heiborlem1 37790 heiborlem6 37795 heiborlem8 37797 cdleme0nex 40269 aks4d1p7 42056 wopprc 43003 n0nsn2el 47010 1nevenALTV 47676 resinsnALT 48858 |
| Copyright terms: Public domain | W3C validator |