| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 988 pm4.55 990 oran 992 nanan 1493 xnor 1513 xorneg 1523 noror 1533 alnex 1781 exnal 1827 exnalimn 1844 2exnexn 1846 nne 2944 dfrex2 3073 rexnal 3100 r2exlem 3143 ddif 4141 dfun2 4270 dfin2 4271 difin 4272 disj4 4459 snnzb 4718 eqsnuniex 5361 onuninsuci 7861 poxp2 8168 frxp3 8176 omopthi 8699 dif1enlem 9196 dif1enlemOLD 9197 dfsup2 9484 rankxplim3 9921 alephgeom 10122 fin1a2lem7 10446 fin41 10484 reclem2pr 11088 1re 11261 ltnlei 11382 divalglem8 16437 f1omvdco3 19467 elcls 23081 ist1-2 23355 fin1aufil 23940 dchrelbas3 27282 sltval2 27701 sltres 27707 nosepeq 27730 nolt02o 27740 nogt01o 27741 nosupbnd2lem1 27760 noinfbnd2lem1 27775 madebdaylemlrcut 27937 tgdim01 28515 axcontlem12 28990 avril1 30482 n0nsnel 32534 creq0 32746 dftr6 35751 dfon3 35893 dffun10 35915 brub 35955 bj-bixor 36592 bj-modal4e 36716 con2bii2 37334 heiborlem1 37818 heiborlem6 37823 heiborlem8 37825 cdleme0nex 40292 aks4d1p7 42084 wopprc 43042 n0nsn2el 47037 1nevenALTV 47678 resinsnALT 48773 |
| Copyright terms: Public domain | W3C validator |