Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xor3 384 imnan 400 annim 404 pm4.53 983 pm4.55 985 oran 987 nanan 1488 xnor 1508 xorneg 1519 noror 1531 alnex 1784 exnal 1829 exnalimn 1846 2exnexn 1848 nne 2947 rexnal 3169 dfrex2 3170 r2exlem 3231 ddif 4071 dfun2 4193 dfin2 4194 difin 4195 disj4 4392 snnzb 4654 eqsnuniex 5283 onuninsuci 7687 omopthi 8491 dif1enlem 8943 dfsup2 9203 rankxplim3 9639 alephgeom 9838 fin1a2lem7 10162 fin41 10200 reclem2pr 10804 1re 10975 ltnlei 11096 divalglem8 16109 f1omvdco3 19057 elcls 22224 ist1-2 22498 fin1aufil 23083 dchrelbas3 26386 tgdim01 26868 axcontlem12 27343 avril1 28827 creq0 31070 dftr6 33718 poxp2 33790 poxp3 33796 frxp3 33797 sltval2 33859 sltres 33865 nosepeq 33888 nolt02o 33898 nogt01o 33899 nosupbnd2lem1 33918 noinfbnd2lem1 33933 madebdaylemlrcut 34079 dfon3 34194 dffun10 34216 brub 34256 bj-bixor 34773 bj-modal4e 34897 con2bii2 35504 heiborlem1 35969 heiborlem6 35974 heiborlem8 35976 cdleme0nex 38304 aks4d1p7 40091 wopprc 40852 1nevenALTV 45143 |
Copyright terms: Public domain | W3C validator |