Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
3 | 1, 2 | xchbinxr 334 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xor3 383 imnan 399 annim 403 pm4.53 982 pm4.55 984 oran 986 nanan 1485 xnor 1505 xorneg 1516 noror 1530 alnex 1785 exnal 1830 exnalimn 1847 2exnexn 1849 nne 2946 rexnal 3165 dfrex2 3166 r2exlem 3230 ddif 4067 dfun2 4190 dfin2 4191 difin 4192 disj4 4389 snnzb 4651 eqsnuniex 5278 onuninsuci 7662 omopthi 8451 dif1enlem 8905 dfsup2 9133 rankxplim3 9570 alephgeom 9769 fin1a2lem7 10093 fin41 10131 reclem2pr 10735 1re 10906 ltnlei 11026 divalglem8 16037 f1omvdco3 18972 elcls 22132 ist1-2 22406 fin1aufil 22991 dchrelbas3 26291 tgdim01 26772 axcontlem12 27246 avril1 28728 creq0 30972 dftr6 33624 poxp2 33717 poxp3 33723 frxp3 33724 sltval2 33786 sltres 33792 nosepeq 33815 nolt02o 33825 nogt01o 33826 nosupbnd2lem1 33845 noinfbnd2lem1 33860 madebdaylemlrcut 34006 dfon3 34121 dffun10 34143 brub 34183 bj-bixor 34700 bj-modal4e 34824 con2bii2 35431 heiborlem1 35896 heiborlem6 35901 heiborlem8 35903 cdleme0nex 38231 aks4d1p7 40019 wopprc 40768 1nevenALTV 45031 |
Copyright terms: Public domain | W3C validator |