| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 987 pm4.55 989 oran 991 nanan 1493 xnor 1513 xorneg 1523 noror 1533 alnex 1781 exnal 1827 exnalimn 1844 2exnexn 1846 nne 2929 dfrex2 3056 rexnal 3082 r2exlem 3122 ddif 4104 dfun2 4233 dfin2 4234 difin 4235 disj4 4422 snnzb 4682 eqsnuniex 5316 onuninsuci 7816 poxp2 8122 frxp3 8130 omopthi 8625 dif1enlem 9120 dif1enlemOLD 9121 dfsup2 9395 rankxplim3 9834 alephgeom 10035 fin1a2lem7 10359 fin41 10397 reclem2pr 11001 ltnlei 11295 divalglem8 16370 f1omvdco3 19379 elcls 22960 ist1-2 23234 fin1aufil 23819 dchrelbas3 27149 sltval2 27568 sltres 27574 nosepeq 27597 nolt02o 27607 nogt01o 27608 nosupbnd2lem1 27627 noinfbnd2lem1 27642 madebdaylemlrcut 27810 onscutlt 28165 tgdim01 28434 axcontlem12 28902 avril1 30392 n0nsnel 32444 creq0 32659 onvf1odlem1 35090 dftr6 35738 dfon3 35880 dffun10 35902 brub 35942 bj-bixor 36579 bj-modal4e 36703 con2bii2 37321 heiborlem1 37805 heiborlem6 37810 heiborlem8 37812 cdleme0nex 40284 aks4d1p7 42071 wopprc 43019 n0nsn2el 47026 1nevenALTV 47692 resinsnALT 48861 |
| Copyright terms: Public domain | W3C validator |