Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xor3 384 imnan 401 annim 405 pm4.53 984 pm4.55 986 oran 988 nanan 1491 xnor 1511 xorneg 1522 noror 1534 alnex 1783 exnal 1829 exnalimn 1846 2exnexn 1848 nne 2945 dfrex2 3074 rexnal 3100 r2exlem 3137 ddif 4088 dfun2 4211 dfin2 4212 difin 4213 disj4 4410 snnzb 4671 eqsnuniex 5308 onuninsuci 7759 omopthi 8567 dif1enlem 9026 dif1enlemOLD 9027 dfsup2 9306 rankxplim3 9743 alephgeom 9944 fin1a2lem7 10268 fin41 10306 reclem2pr 10910 1re 11081 ltnlei 11202 divalglem8 16209 f1omvdco3 19154 elcls 22330 ist1-2 22604 fin1aufil 23189 dchrelbas3 26492 sltval2 26910 sltres 26916 nosepeq 26939 nolt02o 26949 nogt01o 26950 nosupbnd2lem1 26969 noinfbnd2lem1 26984 tgdim01 27157 axcontlem12 27632 avril1 29115 creq0 31355 dftr6 34007 poxp2 34072 poxp3 34078 frxp3 34079 madebdaylemlrcut 34187 dfon3 34331 dffun10 34353 brub 34393 bj-bixor 34910 bj-modal4e 35034 con2bii2 35658 heiborlem1 36123 heiborlem6 36128 heiborlem8 36130 cdleme0nex 38607 aks4d1p7 40394 wopprc 41164 1nevenALTV 45559 |
Copyright terms: Public domain | W3C validator |