![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 986 pm4.55 988 oran 990 nanan 1490 xnor 1510 xorneg 1520 noror 1530 alnex 1779 exnal 1825 exnalimn 1842 2exnexn 1844 nne 2950 dfrex2 3079 rexnal 3106 r2exlem 3149 ddif 4164 dfun2 4289 dfin2 4290 difin 4291 disj4 4482 snnzb 4743 eqsnuniex 5379 onuninsuci 7877 poxp2 8184 frxp3 8192 omopthi 8717 dif1enlem 9222 dif1enlemOLD 9223 dfsup2 9513 rankxplim3 9950 alephgeom 10151 fin1a2lem7 10475 fin41 10513 reclem2pr 11117 1re 11290 ltnlei 11411 divalglem8 16448 f1omvdco3 19491 elcls 23102 ist1-2 23376 fin1aufil 23961 dchrelbas3 27300 sltval2 27719 sltres 27725 nosepeq 27748 nolt02o 27758 nogt01o 27759 nosupbnd2lem1 27778 noinfbnd2lem1 27793 madebdaylemlrcut 27955 tgdim01 28533 axcontlem12 29008 avril1 30495 n0nsnel 32544 creq0 32749 dftr6 35713 dfon3 35856 dffun10 35878 brub 35918 bj-bixor 36557 bj-modal4e 36681 con2bii2 37299 heiborlem1 37771 heiborlem6 37776 heiborlem8 37778 cdleme0nex 40247 aks4d1p7 42040 wopprc 42987 n0nsn2el 46940 1nevenALTV 47565 |
Copyright terms: Public domain | W3C validator |