| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 987 pm4.55 989 oran 991 nanan 1493 xnor 1513 xorneg 1523 noror 1533 alnex 1781 exnal 1827 exnalimn 1844 2exnexn 1846 nne 2930 dfrex2 3057 rexnal 3083 r2exlem 3123 ddif 4107 dfun2 4236 dfin2 4237 difin 4238 disj4 4425 snnzb 4685 eqsnuniex 5319 onuninsuci 7819 poxp2 8125 frxp3 8133 omopthi 8628 dif1enlem 9126 dif1enlemOLD 9127 dfsup2 9402 rankxplim3 9841 alephgeom 10042 fin1a2lem7 10366 fin41 10404 reclem2pr 11008 ltnlei 11302 divalglem8 16377 f1omvdco3 19386 elcls 22967 ist1-2 23241 fin1aufil 23826 dchrelbas3 27156 sltval2 27575 sltres 27581 nosepeq 27604 nolt02o 27614 nogt01o 27615 nosupbnd2lem1 27634 noinfbnd2lem1 27649 madebdaylemlrcut 27817 onscutlt 28172 tgdim01 28441 axcontlem12 28909 avril1 30399 n0nsnel 32451 creq0 32666 onvf1odlem1 35097 dftr6 35745 dfon3 35887 dffun10 35909 brub 35949 bj-bixor 36586 bj-modal4e 36710 con2bii2 37328 heiborlem1 37812 heiborlem6 37817 heiborlem8 37819 cdleme0nex 40291 aks4d1p7 42078 wopprc 43026 n0nsn2el 47030 1nevenALTV 47696 resinsnALT 48865 |
| Copyright terms: Public domain | W3C validator |