![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 987 pm4.55 989 oran 991 nanan 1490 xnor 1510 xorneg 1520 noror 1530 alnex 1778 exnal 1824 exnalimn 1841 2exnexn 1843 nne 2942 dfrex2 3071 rexnal 3098 r2exlem 3141 ddif 4151 dfun2 4276 dfin2 4277 difin 4278 disj4 4465 snnzb 4723 eqsnuniex 5367 onuninsuci 7861 poxp2 8167 frxp3 8175 omopthi 8698 dif1enlem 9195 dif1enlemOLD 9196 dfsup2 9482 rankxplim3 9919 alephgeom 10120 fin1a2lem7 10444 fin41 10482 reclem2pr 11086 1re 11259 ltnlei 11380 divalglem8 16434 f1omvdco3 19482 elcls 23097 ist1-2 23371 fin1aufil 23956 dchrelbas3 27297 sltval2 27716 sltres 27722 nosepeq 27745 nolt02o 27755 nogt01o 27756 nosupbnd2lem1 27775 noinfbnd2lem1 27790 madebdaylemlrcut 27952 tgdim01 28530 axcontlem12 29005 avril1 30492 n0nsnel 32543 creq0 32753 dftr6 35731 dfon3 35874 dffun10 35896 brub 35936 bj-bixor 36574 bj-modal4e 36698 con2bii2 37316 heiborlem1 37798 heiborlem6 37803 heiborlem8 37805 cdleme0nex 40273 aks4d1p7 42065 wopprc 43019 n0nsn2el 46975 1nevenALTV 47616 |
Copyright terms: Public domain | W3C validator |