| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 987 pm4.55 989 oran 991 nanan 1494 xnor 1514 xorneg 1524 noror 1534 alnex 1782 exnal 1828 exnalimn 1845 2exnexn 1847 nne 2933 dfrex2 3060 rexnal 3085 r2exlem 3122 ddif 4090 dfun2 4219 dfin2 4220 difin 4221 disj4 4408 snnzb 4672 eqsnuniex 5303 onuninsuci 7778 poxp2 8081 frxp3 8089 omopthi 8584 dif1enlem 9078 dfsup2 9337 rankxplim3 9783 alephgeom 9982 fin1a2lem7 10306 fin41 10344 reclem2pr 10948 ltnlei 11243 divalglem8 16315 f1omvdco3 19365 elcls 22991 ist1-2 23265 fin1aufil 23850 dchrelbas3 27179 sltval2 27598 sltres 27604 nosepeq 27627 nolt02o 27637 nogt01o 27638 nosupbnd2lem1 27657 noinfbnd2lem1 27672 madebdaylemlrcut 27847 onscutlt 28204 tgdim01 28488 axcontlem12 28957 avril1 30447 n0nsnel 32499 creq0 32725 axregs 35168 onvf1odlem1 35170 dftr6 35818 dfon3 35957 dffun10 35979 brub 36021 bj-bixor 36658 bj-modal4e 36782 con2bii2 37400 heiborlem1 37874 heiborlem6 37879 heiborlem8 37881 cdleme0nex 40412 aks4d1p7 42199 wopprc 43150 n0nsn2el 47152 1nevenALTV 47818 resinsnALT 49000 |
| Copyright terms: Public domain | W3C validator |