| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 987 pm4.55 989 oran 991 nanan 1493 xnor 1513 xorneg 1523 noror 1533 alnex 1781 exnal 1827 exnalimn 1844 2exnexn 1846 nne 2936 dfrex2 3063 rexnal 3089 r2exlem 3129 ddif 4116 dfun2 4245 dfin2 4246 difin 4247 disj4 4434 snnzb 4694 eqsnuniex 5331 onuninsuci 7835 poxp2 8142 frxp3 8150 omopthi 8673 dif1enlem 9170 dif1enlemOLD 9171 dfsup2 9456 rankxplim3 9895 alephgeom 10096 fin1a2lem7 10420 fin41 10458 reclem2pr 11062 1re 11235 ltnlei 11356 divalglem8 16419 f1omvdco3 19430 elcls 23011 ist1-2 23285 fin1aufil 23870 dchrelbas3 27201 sltval2 27620 sltres 27626 nosepeq 27649 nolt02o 27659 nogt01o 27660 nosupbnd2lem1 27679 noinfbnd2lem1 27694 madebdaylemlrcut 27862 onscutlt 28217 tgdim01 28486 axcontlem12 28954 avril1 30444 n0nsnel 32496 creq0 32713 dftr6 35768 dfon3 35910 dffun10 35932 brub 35972 bj-bixor 36609 bj-modal4e 36733 con2bii2 37351 heiborlem1 37835 heiborlem6 37840 heiborlem8 37842 cdleme0nex 40309 aks4d1p7 42096 wopprc 43054 n0nsn2el 47054 1nevenALTV 47705 resinsnALT 48848 |
| Copyright terms: Public domain | W3C validator |