| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | con2bii.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 3 | 1, 2 | xchbinxr 335 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor3 382 imnan 399 annim 403 pm4.53 987 pm4.55 989 oran 991 nanan 1494 xnor 1514 xorneg 1524 noror 1534 alnex 1782 exnal 1828 exnalimn 1845 2exnexn 1847 nne 2932 dfrex2 3059 rexnal 3084 r2exlem 3121 ddif 4091 dfun2 4220 dfin2 4221 difin 4222 disj4 4409 snnzb 4671 eqsnuniex 5299 onuninsuci 7770 poxp2 8073 frxp3 8081 omopthi 8576 dif1enlem 9069 dfsup2 9328 rankxplim3 9774 alephgeom 9973 fin1a2lem7 10297 fin41 10335 reclem2pr 10939 ltnlei 11234 divalglem8 16311 f1omvdco3 19362 elcls 22989 ist1-2 23263 fin1aufil 23848 dchrelbas3 27177 sltval2 27596 sltres 27602 nosepeq 27625 nolt02o 27635 nogt01o 27636 nosupbnd2lem1 27655 noinfbnd2lem1 27670 madebdaylemlrcut 27845 onscutlt 28202 tgdim01 28486 axcontlem12 28954 avril1 30441 n0nsnel 32493 creq0 32717 axregs 35143 onvf1odlem1 35145 dftr6 35793 dfon3 35932 dffun10 35954 brub 35994 bj-bixor 36631 bj-modal4e 36755 con2bii2 37373 heiborlem1 37857 heiborlem6 37862 heiborlem8 37864 cdleme0nex 40335 aks4d1p7 42122 wopprc 43069 n0nsn2el 47062 1nevenALTV 47728 resinsnALT 48910 |
| Copyright terms: Public domain | W3C validator |