| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > conimpf | Structured version Visualization version GIF version | ||
| Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| conimpf.1 | ⊢ 𝜑 |
| conimpf.2 | ⊢ ¬ 𝜓 |
| conimpf.3 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| conimpf | ⊢ (𝜑 ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conimpf.3 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | conimpf.2 | . 2 ⊢ ¬ 𝜓 | |
| 3 | 1, 2 | aibnbaif 46919 | 1 ⊢ (𝜑 ↔ ⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |