Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conimpf Structured version   Visualization version   GIF version

Theorem conimpf 44299
Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.)
Hypotheses
Ref Expression
conimpf.1 𝜑
conimpf.2 ¬ 𝜓
conimpf.3 (𝜑𝜓)
Assertion
Ref Expression
conimpf (𝜑 ↔ ⊥)

Proof of Theorem conimpf
StepHypRef Expression
1 conimpf.3 . 2 (𝜑𝜓)
2 conimpf.2 . 2 ¬ 𝜓
31, 2aibnbaif 44289 1 (𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator