|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abnotataxb | Structured version Visualization version GIF version | ||
| Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| abnotataxb.1 | ⊢ ¬ 𝜑 | 
| abnotataxb.2 | ⊢ 𝜓 | 
| Ref | Expression | 
|---|---|
| abnotataxb | ⊢ (𝜑 ⊻ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abnotataxb.2 | . . . . 5 ⊢ 𝜓 | |
| 2 | abnotataxb.1 | . . . . 5 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (𝜓 ∧ ¬ 𝜑) | 
| 4 | 3 | olci 866 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) | 
| 5 | xor 1016 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) | |
| 6 | 4, 5 | mpbir 231 | . 2 ⊢ ¬ (𝜑 ↔ 𝜓) | 
| 7 | df-xor 1511 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | mpbir 231 | 1 ⊢ (𝜑 ⊻ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ⊻ wxo 1510 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-xor 1511 | 
| This theorem is referenced by: aisfbistiaxb 46937 | 
| Copyright terms: Public domain | W3C validator |