Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > abnotataxb | Structured version Visualization version GIF version |
Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
abnotataxb.1 | ⊢ ¬ 𝜑 |
abnotataxb.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
abnotataxb | ⊢ (𝜑 ⊻ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnotataxb.2 | . . . . 5 ⊢ 𝜓 | |
2 | abnotataxb.1 | . . . . 5 ⊢ ¬ 𝜑 | |
3 | 1, 2 | pm3.2i 471 | . . . 4 ⊢ (𝜓 ∧ ¬ 𝜑) |
4 | 3 | olci 863 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) |
5 | xor 1012 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) | |
6 | 4, 5 | mpbir 230 | . 2 ⊢ ¬ (𝜑 ↔ 𝜓) |
7 | df-xor 1507 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | mpbir 230 | 1 ⊢ (𝜑 ⊻ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 ⊻ wxo 1506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-xor 1507 |
This theorem is referenced by: aisfbistiaxb 44415 |
Copyright terms: Public domain | W3C validator |