Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conimpfalt Structured version   Visualization version   GIF version

Theorem conimpfalt 43952
Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 29-Aug-2016.)
Hypotheses
Ref Expression
conimpfalt.1 𝜑
conimpfalt.2 ¬ 𝜓
conimpfalt.3 (𝜑𝜓)
Assertion
Ref Expression
conimpfalt (𝜑 ↔ ⊥)

Proof of Theorem conimpfalt
StepHypRef Expression
1 conimpfalt.3 . 2 (𝜑𝜓)
2 conimpfalt.2 . 2 ¬ 𝜓
31, 2aibnbaif 43941 1 (𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wfal 1554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-tru 1545  df-fal 1555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator