| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aistbisfiaxb | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| aistbisfiaxb.1 | ⊢ (𝜑 ↔ ⊤) |
| aistbisfiaxb.2 | ⊢ (𝜓 ↔ ⊥) |
| Ref | Expression |
|---|---|
| aistbisfiaxb | ⊢ (𝜑 ⊻ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aistbisfiaxb.1 | . . 3 ⊢ (𝜑 ↔ ⊤) | |
| 2 | 1 | aistia 46909 | . 2 ⊢ 𝜑 |
| 3 | aistbisfiaxb.2 | . . 3 ⊢ (𝜓 ↔ ⊥) | |
| 4 | 3 | aisfina 46910 | . 2 ⊢ ¬ 𝜓 |
| 5 | 2, 4 | abnotbtaxb 46927 | 1 ⊢ (𝜑 ⊻ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊻ wxo 1511 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-xor 1512 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |