Users' Mathboxes Mathbox for Adrian Ducourtial < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  currybi Structured version   Visualization version   GIF version

Theorem currybi 34657
Description: Biconditional version of Curry's paradox. If some proposition 𝜑 amounts to the self-referential statement "This very statement is equivalent to 𝜓", then 𝜓 is true. See bj-currypara 35424 in BJ's mathbox for the classical version. (Contributed by Adrian Ducourtial, 18-Mar-2025.)
Assertion
Ref Expression
currybi ((𝜑 ↔ (𝜑𝜓)) → 𝜓)

Proof of Theorem currybi
StepHypRef Expression
1 biid 260 . 2 (𝜑𝜑)
2 biass 385 . . 3 (((𝜑𝜑) ↔ 𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
32biimpri 227 . 2 ((𝜑 ↔ (𝜑𝜓)) → ((𝜑𝜑) ↔ 𝜓))
41, 3mpbii 232 1 ((𝜑 ↔ (𝜑𝜓)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator