|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > biass | Structured version Visualization version GIF version | ||
| Description: Associative law for the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805. Interestingly, this law was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by NM, 8-Jan-2005.) (Proof shortened by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 21-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| biass | ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.501 366 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | |
| 2 | 1 | bibi1d 343 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) | 
| 3 | pm5.501 366 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) | |
| 4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) | 
| 5 | nbbn 383 | . . . 4 ⊢ ((¬ 𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) | |
| 6 | nbn2 370 | . . . . 5 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) | |
| 7 | 6 | bibi1d 343 | . . . 4 ⊢ (¬ 𝜑 → ((¬ 𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) | 
| 8 | 5, 7 | bitr3id 285 | . . 3 ⊢ (¬ 𝜑 → (¬ (𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) | 
| 9 | nbn2 370 | . . 3 ⊢ (¬ 𝜑 → (¬ (𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) | |
| 10 | 8, 9 | bitr3d 281 | . 2 ⊢ (¬ 𝜑 → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) | 
| 11 | 4, 10 | pm2.61i 182 | 1 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: biluk 385 xorass 1514 had1 1602 currybi 35694 wl-3xorbi2 37476 | 
| Copyright terms: Public domain | W3C validator |