Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biass | Structured version Visualization version GIF version |
Description: Associative law for the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805. Interestingly, this law was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by NM, 8-Jan-2005.) (Proof shortened by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 21-Sep-2013.) |
Ref | Expression |
---|---|
biass | ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 367 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | |
2 | 1 | bibi1d 344 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
3 | pm5.501 367 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) | |
4 | 2, 3 | bitr3d 280 | . 2 ⊢ (𝜑 → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
5 | nbbn 385 | . . . 4 ⊢ ((¬ 𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) | |
6 | nbn2 371 | . . . . 5 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) | |
7 | 6 | bibi1d 344 | . . . 4 ⊢ (¬ 𝜑 → ((¬ 𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
8 | 5, 7 | bitr3id 285 | . . 3 ⊢ (¬ 𝜑 → (¬ (𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
9 | nbn2 371 | . . 3 ⊢ (¬ 𝜑 → (¬ (𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) | |
10 | 8, 9 | bitr3d 280 | . 2 ⊢ (¬ 𝜑 → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
11 | 4, 10 | pm2.61i 182 | 1 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biluk 387 xorass 1511 had1 1605 wl-3xorbi2 35645 |
Copyright terms: Public domain | W3C validator |