Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimpri | Structured version Visualization version GIF version |
Description: Infer a converse implication from a logical equivalence. Inference associated with biimpr 219. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 16-Sep-2013.) |
Ref | Expression |
---|---|
biimpri.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
biimpri | ⊢ (𝜓 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | bicomi 223 | . 2 ⊢ (𝜓 ↔ 𝜑) |
3 | 2 | biimpi 215 | 1 ⊢ (𝜓 → 𝜑) |
Copyright terms: Public domain | W3C validator |