![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0vfval | Structured version Visualization version GIF version |
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0vfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
0vfval.5 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
0vfval | ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3487 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
2 | fo1st 7991 | . . . . . . 7 ⊢ 1st :V–onto→V | |
3 | fofn 6800 | . . . . . . 7 ⊢ (1st :V–onto→V → 1st Fn V) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ 1st Fn V |
5 | ssv 4001 | . . . . . 6 ⊢ ran 1st ⊆ V | |
6 | fnco 6660 | . . . . . 6 ⊢ ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V) | |
7 | 4, 4, 5, 6 | mp3an 1457 | . . . . 5 ⊢ (1st ∘ 1st ) Fn V |
8 | df-va 30353 | . . . . . 6 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | fneq1i 6639 | . . . . 5 ⊢ ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V) |
10 | 7, 9 | mpbir 230 | . . . 4 ⊢ +𝑣 Fn V |
11 | fvco2 6981 | . . . 4 ⊢ (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 687 | . . 3 ⊢ (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) |
13 | 0vfval.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
14 | df-0v 30356 | . . . . 5 ⊢ 0vec = (GId ∘ +𝑣 ) | |
15 | 14 | fveq1i 6885 | . . . 4 ⊢ (0vec‘𝑈) = ((GId ∘ +𝑣 )‘𝑈) |
16 | 13, 15 | eqtri 2754 | . . 3 ⊢ 𝑍 = ((GId ∘ +𝑣 )‘𝑈) |
17 | 0vfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | 17 | fveq2i 6887 | . . 3 ⊢ (GId‘𝐺) = (GId‘( +𝑣 ‘𝑈)) |
19 | 12, 16, 18 | 3eqtr4g 2791 | . 2 ⊢ (𝑈 ∈ V → 𝑍 = (GId‘𝐺)) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 ran crn 5670 ∘ ccom 5673 Fn wfn 6531 –onto→wfo 6534 ‘cfv 6536 1st c1st 7969 GIdcgi 30248 +𝑣 cpv 30343 0veccn0v 30346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7971 df-va 30353 df-0v 30356 |
This theorem is referenced by: nvi 30372 nvzcl 30392 nv0rid 30393 nv0lid 30394 nv0 30395 nvsz 30396 nvrinv 30409 nvlinv 30410 hh0v 30926 |
Copyright terms: Public domain | W3C validator |