MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vfval Structured version   Visualization version   GIF version

Theorem 0vfval 28968
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0vfval.2 𝐺 = ( +𝑣𝑈)
0vfval.5 𝑍 = (0vec𝑈)
Assertion
Ref Expression
0vfval (𝑈𝑉𝑍 = (GId‘𝐺))

Proof of Theorem 0vfval
StepHypRef Expression
1 elex 3450 . 2 (𝑈𝑉𝑈 ∈ V)
2 fo1st 7851 . . . . . . 7 1st :V–onto→V
3 fofn 6690 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . . . . 6 1st Fn V
5 ssv 3945 . . . . . 6 ran 1st ⊆ V
6 fnco 6549 . . . . . 6 ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V)
74, 4, 5, 6mp3an 1460 . . . . 5 (1st ∘ 1st ) Fn V
8 df-va 28957 . . . . . 6 +𝑣 = (1st ∘ 1st )
98fneq1i 6530 . . . . 5 ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 230 . . . 4 +𝑣 Fn V
11 fvco2 6865 . . . 4 (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
1210, 11mpan 687 . . 3 (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
13 0vfval.5 . . . 4 𝑍 = (0vec𝑈)
14 df-0v 28960 . . . . 5 0vec = (GId ∘ +𝑣 )
1514fveq1i 6775 . . . 4 (0vec𝑈) = ((GId ∘ +𝑣 )‘𝑈)
1613, 15eqtri 2766 . . 3 𝑍 = ((GId ∘ +𝑣 )‘𝑈)
17 0vfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
1817fveq2i 6777 . . 3 (GId‘𝐺) = (GId‘( +𝑣𝑈))
1912, 16, 183eqtr4g 2803 . 2 (𝑈 ∈ V → 𝑍 = (GId‘𝐺))
201, 19syl 17 1 (𝑈𝑉𝑍 = (GId‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  ran crn 5590  ccom 5593   Fn wfn 6428  ontowfo 6431  cfv 6433  1st c1st 7829  GIdcgi 28852   +𝑣 cpv 28947  0veccn0v 28950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-va 28957  df-0v 28960
This theorem is referenced by:  nvi  28976  nvzcl  28996  nv0rid  28997  nv0lid  28998  nv0  28999  nvsz  29000  nvrinv  29013  nvlinv  29014  hh0v  29530
  Copyright terms: Public domain W3C validator