MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vfval Structured version   Visualization version   GIF version

Theorem 0vfval 30542
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0vfval.2 𝐺 = ( +𝑣𝑈)
0vfval.5 𝑍 = (0vec𝑈)
Assertion
Ref Expression
0vfval (𝑈𝑉𝑍 = (GId‘𝐺))

Proof of Theorem 0vfval
StepHypRef Expression
1 elex 3471 . 2 (𝑈𝑉𝑈 ∈ V)
2 fo1st 7991 . . . . . . 7 1st :V–onto→V
3 fofn 6777 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . . . . 6 1st Fn V
5 ssv 3974 . . . . . 6 ran 1st ⊆ V
6 fnco 6639 . . . . . 6 ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V)
74, 4, 5, 6mp3an 1463 . . . . 5 (1st ∘ 1st ) Fn V
8 df-va 30531 . . . . . 6 +𝑣 = (1st ∘ 1st )
98fneq1i 6618 . . . . 5 ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 231 . . . 4 +𝑣 Fn V
11 fvco2 6961 . . . 4 (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
1210, 11mpan 690 . . 3 (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
13 0vfval.5 . . . 4 𝑍 = (0vec𝑈)
14 df-0v 30534 . . . . 5 0vec = (GId ∘ +𝑣 )
1514fveq1i 6862 . . . 4 (0vec𝑈) = ((GId ∘ +𝑣 )‘𝑈)
1613, 15eqtri 2753 . . 3 𝑍 = ((GId ∘ +𝑣 )‘𝑈)
17 0vfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
1817fveq2i 6864 . . 3 (GId‘𝐺) = (GId‘( +𝑣𝑈))
1912, 16, 183eqtr4g 2790 . 2 (𝑈 ∈ V → 𝑍 = (GId‘𝐺))
201, 19syl 17 1 (𝑈𝑉𝑍 = (GId‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  ran crn 5642  ccom 5645   Fn wfn 6509  ontowfo 6512  cfv 6514  1st c1st 7969  GIdcgi 30426   +𝑣 cpv 30521  0veccn0v 30524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-va 30531  df-0v 30534
This theorem is referenced by:  nvi  30550  nvzcl  30570  nv0rid  30571  nv0lid  30572  nv0  30573  nvsz  30574  nvrinv  30587  nvlinv  30588  hh0v  31104
  Copyright terms: Public domain W3C validator