MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vfval Structured version   Visualization version   GIF version

Theorem 0vfval 29434
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0vfval.2 𝐺 = ( +𝑣𝑈)
0vfval.5 𝑍 = (0vec𝑈)
Assertion
Ref Expression
0vfval (𝑈𝑉𝑍 = (GId‘𝐺))

Proof of Theorem 0vfval
StepHypRef Expression
1 elex 3461 . 2 (𝑈𝑉𝑈 ∈ V)
2 fo1st 7937 . . . . . . 7 1st :V–onto→V
3 fofn 6755 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . . . . 6 1st Fn V
5 ssv 3966 . . . . . 6 ran 1st ⊆ V
6 fnco 6615 . . . . . 6 ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V)
74, 4, 5, 6mp3an 1461 . . . . 5 (1st ∘ 1st ) Fn V
8 df-va 29423 . . . . . 6 +𝑣 = (1st ∘ 1st )
98fneq1i 6596 . . . . 5 ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 230 . . . 4 +𝑣 Fn V
11 fvco2 6935 . . . 4 (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
1210, 11mpan 688 . . 3 (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
13 0vfval.5 . . . 4 𝑍 = (0vec𝑈)
14 df-0v 29426 . . . . 5 0vec = (GId ∘ +𝑣 )
1514fveq1i 6840 . . . 4 (0vec𝑈) = ((GId ∘ +𝑣 )‘𝑈)
1613, 15eqtri 2764 . . 3 𝑍 = ((GId ∘ +𝑣 )‘𝑈)
17 0vfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
1817fveq2i 6842 . . 3 (GId‘𝐺) = (GId‘( +𝑣𝑈))
1912, 16, 183eqtr4g 2801 . 2 (𝑈 ∈ V → 𝑍 = (GId‘𝐺))
201, 19syl 17 1 (𝑈𝑉𝑍 = (GId‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3443  wss 3908  ran crn 5632  ccom 5635   Fn wfn 6488  ontowfo 6491  cfv 6493  1st c1st 7915  GIdcgi 29318   +𝑣 cpv 29413  0veccn0v 29416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-un 7668
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-fo 6499  df-fv 6501  df-1st 7917  df-va 29423  df-0v 29426
This theorem is referenced by:  nvi  29442  nvzcl  29462  nv0rid  29463  nv0lid  29464  nv0  29465  nvsz  29466  nvrinv  29479  nvlinv  29480  hh0v  29996
  Copyright terms: Public domain W3C validator