![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0vfval | Structured version Visualization version GIF version |
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0vfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
0vfval.5 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
0vfval | ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3462 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
2 | fo1st 7942 | . . . . . . 7 ⊢ 1st :V–onto→V | |
3 | fofn 6759 | . . . . . . 7 ⊢ (1st :V–onto→V → 1st Fn V) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ 1st Fn V |
5 | ssv 3969 | . . . . . 6 ⊢ ran 1st ⊆ V | |
6 | fnco 6619 | . . . . . 6 ⊢ ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V) | |
7 | 4, 4, 5, 6 | mp3an 1462 | . . . . 5 ⊢ (1st ∘ 1st ) Fn V |
8 | df-va 29579 | . . . . . 6 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | fneq1i 6600 | . . . . 5 ⊢ ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V) |
10 | 7, 9 | mpbir 230 | . . . 4 ⊢ +𝑣 Fn V |
11 | fvco2 6939 | . . . 4 ⊢ (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 689 | . . 3 ⊢ (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) |
13 | 0vfval.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
14 | df-0v 29582 | . . . . 5 ⊢ 0vec = (GId ∘ +𝑣 ) | |
15 | 14 | fveq1i 6844 | . . . 4 ⊢ (0vec‘𝑈) = ((GId ∘ +𝑣 )‘𝑈) |
16 | 13, 15 | eqtri 2761 | . . 3 ⊢ 𝑍 = ((GId ∘ +𝑣 )‘𝑈) |
17 | 0vfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | 17 | fveq2i 6846 | . . 3 ⊢ (GId‘𝐺) = (GId‘( +𝑣 ‘𝑈)) |
19 | 12, 16, 18 | 3eqtr4g 2798 | . 2 ⊢ (𝑈 ∈ V → 𝑍 = (GId‘𝐺)) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ⊆ wss 3911 ran crn 5635 ∘ ccom 5638 Fn wfn 6492 –onto→wfo 6495 ‘cfv 6497 1st c1st 7920 GIdcgi 29474 +𝑣 cpv 29569 0veccn0v 29572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fo 6503 df-fv 6505 df-1st 7922 df-va 29579 df-0v 29582 |
This theorem is referenced by: nvi 29598 nvzcl 29618 nv0rid 29619 nv0lid 29620 nv0 29621 nvsz 29622 nvrinv 29635 nvlinv 29636 hh0v 30152 |
Copyright terms: Public domain | W3C validator |