MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vfval Structured version   Visualization version   GIF version

Theorem 0vfval 30434
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0vfval.2 𝐺 = ( +𝑣𝑈)
0vfval.5 𝑍 = (0vec𝑈)
Assertion
Ref Expression
0vfval (𝑈𝑉𝑍 = (GId‘𝐺))

Proof of Theorem 0vfval
StepHypRef Expression
1 elex 3490 . 2 (𝑈𝑉𝑈 ∈ V)
2 fo1st 8017 . . . . . . 7 1st :V–onto→V
3 fofn 6816 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . . . . 6 1st Fn V
5 ssv 4004 . . . . . 6 ran 1st ⊆ V
6 fnco 6675 . . . . . 6 ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V)
74, 4, 5, 6mp3an 1457 . . . . 5 (1st ∘ 1st ) Fn V
8 df-va 30423 . . . . . 6 +𝑣 = (1st ∘ 1st )
98fneq1i 6654 . . . . 5 ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 230 . . . 4 +𝑣 Fn V
11 fvco2 6998 . . . 4 (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
1210, 11mpan 688 . . 3 (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
13 0vfval.5 . . . 4 𝑍 = (0vec𝑈)
14 df-0v 30426 . . . . 5 0vec = (GId ∘ +𝑣 )
1514fveq1i 6901 . . . 4 (0vec𝑈) = ((GId ∘ +𝑣 )‘𝑈)
1613, 15eqtri 2755 . . 3 𝑍 = ((GId ∘ +𝑣 )‘𝑈)
17 0vfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
1817fveq2i 6903 . . 3 (GId‘𝐺) = (GId‘( +𝑣𝑈))
1912, 16, 183eqtr4g 2792 . 2 (𝑈 ∈ V → 𝑍 = (GId‘𝐺))
201, 19syl 17 1 (𝑈𝑉𝑍 = (GId‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3471  wss 3947  ran crn 5681  ccom 5684   Fn wfn 6546  ontowfo 6549  cfv 6551  1st c1st 7995  GIdcgi 30318   +𝑣 cpv 30413  0veccn0v 30416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-fo 6557  df-fv 6559  df-1st 7997  df-va 30423  df-0v 30426
This theorem is referenced by:  nvi  30442  nvzcl  30462  nv0rid  30463  nv0lid  30464  nv0  30465  nvsz  30466  nvrinv  30479  nvlinv  30480  hh0v  30996
  Copyright terms: Public domain W3C validator