| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0vfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0vfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| 0vfval.5 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| 0vfval | ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
| 2 | fo1st 7988 | . . . . . . 7 ⊢ 1st :V–onto→V | |
| 3 | fofn 6774 | . . . . . . 7 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ 1st Fn V |
| 5 | ssv 3971 | . . . . . 6 ⊢ ran 1st ⊆ V | |
| 6 | fnco 6636 | . . . . . 6 ⊢ ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V) | |
| 7 | 4, 4, 5, 6 | mp3an 1463 | . . . . 5 ⊢ (1st ∘ 1st ) Fn V |
| 8 | df-va 30524 | . . . . . 6 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 9 | 8 | fneq1i 6615 | . . . . 5 ⊢ ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ +𝑣 Fn V |
| 11 | fvco2 6958 | . . . 4 ⊢ (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) | |
| 12 | 10, 11 | mpan 690 | . . 3 ⊢ (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) |
| 13 | 0vfval.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
| 14 | df-0v 30527 | . . . . 5 ⊢ 0vec = (GId ∘ +𝑣 ) | |
| 15 | 14 | fveq1i 6859 | . . . 4 ⊢ (0vec‘𝑈) = ((GId ∘ +𝑣 )‘𝑈) |
| 16 | 13, 15 | eqtri 2752 | . . 3 ⊢ 𝑍 = ((GId ∘ +𝑣 )‘𝑈) |
| 17 | 0vfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 18 | 17 | fveq2i 6861 | . . 3 ⊢ (GId‘𝐺) = (GId‘( +𝑣 ‘𝑈)) |
| 19 | 12, 16, 18 | 3eqtr4g 2789 | . 2 ⊢ (𝑈 ∈ V → 𝑍 = (GId‘𝐺)) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ran crn 5639 ∘ ccom 5642 Fn wfn 6506 –onto→wfo 6509 ‘cfv 6511 1st c1st 7966 GIdcgi 30419 +𝑣 cpv 30514 0veccn0v 30517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-va 30524 df-0v 30527 |
| This theorem is referenced by: nvi 30543 nvzcl 30563 nv0rid 30564 nv0lid 30565 nv0 30566 nvsz 30567 nvrinv 30580 nvlinv 30581 hh0v 31097 |
| Copyright terms: Public domain | W3C validator |