![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0vfval | Structured version Visualization version GIF version |
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0vfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
0vfval.5 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
0vfval | ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3461 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
2 | fo1st 7937 | . . . . . . 7 ⊢ 1st :V–onto→V | |
3 | fofn 6755 | . . . . . . 7 ⊢ (1st :V–onto→V → 1st Fn V) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ 1st Fn V |
5 | ssv 3966 | . . . . . 6 ⊢ ran 1st ⊆ V | |
6 | fnco 6615 | . . . . . 6 ⊢ ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V) | |
7 | 4, 4, 5, 6 | mp3an 1461 | . . . . 5 ⊢ (1st ∘ 1st ) Fn V |
8 | df-va 29423 | . . . . . 6 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | fneq1i 6596 | . . . . 5 ⊢ ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V) |
10 | 7, 9 | mpbir 230 | . . . 4 ⊢ +𝑣 Fn V |
11 | fvco2 6935 | . . . 4 ⊢ (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 688 | . . 3 ⊢ (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) |
13 | 0vfval.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
14 | df-0v 29426 | . . . . 5 ⊢ 0vec = (GId ∘ +𝑣 ) | |
15 | 14 | fveq1i 6840 | . . . 4 ⊢ (0vec‘𝑈) = ((GId ∘ +𝑣 )‘𝑈) |
16 | 13, 15 | eqtri 2764 | . . 3 ⊢ 𝑍 = ((GId ∘ +𝑣 )‘𝑈) |
17 | 0vfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | 17 | fveq2i 6842 | . . 3 ⊢ (GId‘𝐺) = (GId‘( +𝑣 ‘𝑈)) |
19 | 12, 16, 18 | 3eqtr4g 2801 | . 2 ⊢ (𝑈 ∈ V → 𝑍 = (GId‘𝐺)) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3443 ⊆ wss 3908 ran crn 5632 ∘ ccom 5635 Fn wfn 6488 –onto→wfo 6491 ‘cfv 6493 1st c1st 7915 GIdcgi 29318 +𝑣 cpv 29413 0veccn0v 29416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5254 ax-nul 5261 ax-pr 5382 ax-un 7668 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5529 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-fo 6499 df-fv 6501 df-1st 7917 df-va 29423 df-0v 29426 |
This theorem is referenced by: nvi 29442 nvzcl 29462 nv0rid 29463 nv0lid 29464 nv0 29465 nvsz 29466 nvrinv 29479 nvlinv 29480 hh0v 29996 |
Copyright terms: Public domain | W3C validator |