| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0vfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0vfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| 0vfval.5 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| 0vfval | ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
| 2 | fo1st 7991 | . . . . . . 7 ⊢ 1st :V–onto→V | |
| 3 | fofn 6777 | . . . . . . 7 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ 1st Fn V |
| 5 | ssv 3974 | . . . . . 6 ⊢ ran 1st ⊆ V | |
| 6 | fnco 6639 | . . . . . 6 ⊢ ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V) | |
| 7 | 4, 4, 5, 6 | mp3an 1463 | . . . . 5 ⊢ (1st ∘ 1st ) Fn V |
| 8 | df-va 30531 | . . . . . 6 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 9 | 8 | fneq1i 6618 | . . . . 5 ⊢ ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ +𝑣 Fn V |
| 11 | fvco2 6961 | . . . 4 ⊢ (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) | |
| 12 | 10, 11 | mpan 690 | . . 3 ⊢ (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) |
| 13 | 0vfval.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
| 14 | df-0v 30534 | . . . . 5 ⊢ 0vec = (GId ∘ +𝑣 ) | |
| 15 | 14 | fveq1i 6862 | . . . 4 ⊢ (0vec‘𝑈) = ((GId ∘ +𝑣 )‘𝑈) |
| 16 | 13, 15 | eqtri 2753 | . . 3 ⊢ 𝑍 = ((GId ∘ +𝑣 )‘𝑈) |
| 17 | 0vfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 18 | 17 | fveq2i 6864 | . . 3 ⊢ (GId‘𝐺) = (GId‘( +𝑣 ‘𝑈)) |
| 19 | 12, 16, 18 | 3eqtr4g 2790 | . 2 ⊢ (𝑈 ∈ V → 𝑍 = (GId‘𝐺)) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ran crn 5642 ∘ ccom 5645 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 1st c1st 7969 GIdcgi 30426 +𝑣 cpv 30521 0veccn0v 30524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-va 30531 df-0v 30534 |
| This theorem is referenced by: nvi 30550 nvzcl 30570 nv0rid 30571 nv0lid 30572 nv0 30573 nvsz 30574 nvrinv 30587 nvlinv 30588 hh0v 31104 |
| Copyright terms: Public domain | W3C validator |