![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0vfval | Structured version Visualization version GIF version |
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0vfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
0vfval.5 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
0vfval | ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
2 | fo1st 8033 | . . . . . . 7 ⊢ 1st :V–onto→V | |
3 | fofn 6823 | . . . . . . 7 ⊢ (1st :V–onto→V → 1st Fn V) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ 1st Fn V |
5 | ssv 4020 | . . . . . 6 ⊢ ran 1st ⊆ V | |
6 | fnco 6687 | . . . . . 6 ⊢ ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V) | |
7 | 4, 4, 5, 6 | mp3an 1460 | . . . . 5 ⊢ (1st ∘ 1st ) Fn V |
8 | df-va 30624 | . . . . . 6 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | fneq1i 6666 | . . . . 5 ⊢ ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V) |
10 | 7, 9 | mpbir 231 | . . . 4 ⊢ +𝑣 Fn V |
11 | fvco2 7006 | . . . 4 ⊢ (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 690 | . . 3 ⊢ (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) |
13 | 0vfval.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
14 | df-0v 30627 | . . . . 5 ⊢ 0vec = (GId ∘ +𝑣 ) | |
15 | 14 | fveq1i 6908 | . . . 4 ⊢ (0vec‘𝑈) = ((GId ∘ +𝑣 )‘𝑈) |
16 | 13, 15 | eqtri 2763 | . . 3 ⊢ 𝑍 = ((GId ∘ +𝑣 )‘𝑈) |
17 | 0vfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | 17 | fveq2i 6910 | . . 3 ⊢ (GId‘𝐺) = (GId‘( +𝑣 ‘𝑈)) |
19 | 12, 16, 18 | 3eqtr4g 2800 | . 2 ⊢ (𝑈 ∈ V → 𝑍 = (GId‘𝐺)) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ran crn 5690 ∘ ccom 5693 Fn wfn 6558 –onto→wfo 6561 ‘cfv 6563 1st c1st 8011 GIdcgi 30519 +𝑣 cpv 30614 0veccn0v 30617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-va 30624 df-0v 30627 |
This theorem is referenced by: nvi 30643 nvzcl 30663 nv0rid 30664 nv0lid 30665 nv0 30666 nvsz 30667 nvrinv 30680 nvlinv 30681 hh0v 31197 |
Copyright terms: Public domain | W3C validator |