![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0vfval | Structured version Visualization version GIF version |
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0vfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
0vfval.5 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
0vfval | ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
2 | fo1st 8050 | . . . . . . 7 ⊢ 1st :V–onto→V | |
3 | fofn 6836 | . . . . . . 7 ⊢ (1st :V–onto→V → 1st Fn V) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ 1st Fn V |
5 | ssv 4033 | . . . . . 6 ⊢ ran 1st ⊆ V | |
6 | fnco 6697 | . . . . . 6 ⊢ ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V) | |
7 | 4, 4, 5, 6 | mp3an 1461 | . . . . 5 ⊢ (1st ∘ 1st ) Fn V |
8 | df-va 30627 | . . . . . 6 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | fneq1i 6676 | . . . . 5 ⊢ ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V) |
10 | 7, 9 | mpbir 231 | . . . 4 ⊢ +𝑣 Fn V |
11 | fvco2 7019 | . . . 4 ⊢ (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 689 | . . 3 ⊢ (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣 ‘𝑈))) |
13 | 0vfval.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
14 | df-0v 30630 | . . . . 5 ⊢ 0vec = (GId ∘ +𝑣 ) | |
15 | 14 | fveq1i 6921 | . . . 4 ⊢ (0vec‘𝑈) = ((GId ∘ +𝑣 )‘𝑈) |
16 | 13, 15 | eqtri 2768 | . . 3 ⊢ 𝑍 = ((GId ∘ +𝑣 )‘𝑈) |
17 | 0vfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | 17 | fveq2i 6923 | . . 3 ⊢ (GId‘𝐺) = (GId‘( +𝑣 ‘𝑈)) |
19 | 12, 16, 18 | 3eqtr4g 2805 | . 2 ⊢ (𝑈 ∈ V → 𝑍 = (GId‘𝐺)) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ran crn 5701 ∘ ccom 5704 Fn wfn 6568 –onto→wfo 6571 ‘cfv 6573 1st c1st 8028 GIdcgi 30522 +𝑣 cpv 30617 0veccn0v 30620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-va 30627 df-0v 30630 |
This theorem is referenced by: nvi 30646 nvzcl 30666 nv0rid 30667 nv0lid 30668 nv0 30669 nvsz 30670 nvrinv 30683 nvlinv 30684 hh0v 31200 |
Copyright terms: Public domain | W3C validator |