| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-1s | Structured version Visualization version GIF version | ||
| Description: Define surreal one. This is the simplest number greater than surreal zero. Definition from [Conway] p. 18. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| df-1s | ⊢ 1s = ({ 0s } |s ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1s 27869 | . 2 class 1s | |
| 2 | c0s 27868 | . . . 4 class 0s | |
| 3 | 2 | csn 4625 | . . 3 class { 0s } |
| 4 | c0 4332 | . . 3 class ∅ | |
| 5 | cscut 27828 | . . 3 class |s | |
| 6 | 3, 4, 5 | co 7432 | . 2 class ({ 0s } |s ∅) |
| 7 | 1, 6 | wceq 1539 | 1 wff 1s = ({ 0s } |s ∅) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 1sno 27873 0slt1s 27875 bday1s 27877 n0scut 28339 1p1e2s 28401 nohalf 28408 |
| Copyright terms: Public domain | W3C validator |