![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-1s | Structured version Visualization version GIF version |
Description: Define surreal one. This is the simplest number greater than surreal zero. Definition from [Conway] p. 18. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
df-1s | ⊢ 1s = ({ 0s } |s ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1s 27184 | . 2 class 1s | |
2 | c0s 27183 | . . . 4 class 0s | |
3 | 2 | csn 4587 | . . 3 class { 0s } |
4 | c0 4283 | . . 3 class ∅ | |
5 | cscut 27144 | . . 3 class |s | |
6 | 3, 4, 5 | co 7358 | . 2 class ({ 0s } |s ∅) |
7 | 1, 6 | wceq 1542 | 1 wff 1s = ({ 0s } |s ∅) |
Colors of variables: wff setvar class |
This definition is referenced by: 1sno 27188 0slt1s 27190 bday1s 27192 |
Copyright terms: Public domain | W3C validator |