Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0no Structured version   Visualization version   GIF version

Theorem 0no 43439
Description: Ordinal zero maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
Assertion
Ref Expression
0no ∅ ∈ No

Proof of Theorem 0no
StepHypRef Expression
1 0xp 5788 . 2 (∅ × {2o}) = ∅
2 0elon 6443 . . 3 ∅ ∈ On
32onnoi 43438 . 2 (∅ × {2o}) ∈ No
41, 3eqeltrri 2837 1 ∅ ∈ No
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  c0 4340  {csn 4632   × cxp 5688  2oc2o 8505   No csur 27707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-ord 6392  df-on 6393  df-suc 6395  df-fun 6568  df-fn 6569  df-f 6570  df-1o 8511  df-2o 8512  df-no 27710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator