MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  twocut Structured version   Visualization version   GIF version

Theorem twocut 28350
Description: Two times the cut of zero and one is one. (Contributed by Scott Fenton, 5-Sep-2025.)
Assertion
Ref Expression
twocut (2s ·s ({ 0s } |s { 1s })) = 1s

Proof of Theorem twocut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27775 . . . . . . 7 0s No
21a1i 11 . . . . . 6 (⊤ → 0s No )
3 1sno 27776 . . . . . . 7 1s No
43a1i 11 . . . . . 6 (⊤ → 1s No )
5 0slt1s 27778 . . . . . . 7 0s <s 1s
65a1i 11 . . . . . 6 (⊤ → 0s <s 1s )
72, 4, 6ssltsn 27738 . . . . 5 (⊤ → { 0s } <<s { 1s })
87scutcld 27749 . . . 4 (⊤ → ({ 0s } |s { 1s }) ∈ No )
98mptru 1547 . . 3 ({ 0s } |s { 1s }) ∈ No
10 no2times 28344 . . 3 (({ 0s } |s { 1s }) ∈ No → (2s ·s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })))
119, 10ax-mp 5 . 2 (2s ·s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s }))
12 eqidd 2730 . . . . 5 (⊤ → ({ 0s } |s { 1s }) = ({ 0s } |s { 1s }))
137, 7, 12, 12addsunif 27949 . . . 4 (⊤ → (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})))
1413mptru 1547 . . 3 (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}))
151elexi 3467 . . . . . . . . . . 11 0s ∈ V
16 oveq1 7376 . . . . . . . . . . . 12 (𝑦 = 0s → (𝑦 +s ({ 0s } |s { 1s })) = ( 0s +s ({ 0s } |s { 1s })))
1716eqeq2d 2740 . . . . . . . . . . 11 (𝑦 = 0s → (𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ( 0s +s ({ 0s } |s { 1s }))))
1815, 17rexsn 4642 . . . . . . . . . 10 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ( 0s +s ({ 0s } |s { 1s })))
19 addslid 27915 . . . . . . . . . . . 12 (({ 0s } |s { 1s }) ∈ No → ( 0s +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s }))
209, 19ax-mp 5 . . . . . . . . . . 11 ( 0s +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s })
2120eqeq2i 2742 . . . . . . . . . 10 (𝑥 = ( 0s +s ({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s }))
2218, 21bitri 275 . . . . . . . . 9 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s }))
2322abbii 2796 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = ({ 0s } |s { 1s })}
24 df-sn 4586 . . . . . . . 8 {({ 0s } |s { 1s })} = {𝑥𝑥 = ({ 0s } |s { 1s })}
2523, 24eqtr4i 2755 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {({ 0s } |s { 1s })}
26 oveq2 7377 . . . . . . . . . . . 12 (𝑦 = 0s → (({ 0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s }) +s 0s ))
2726eqeq2d 2740 . . . . . . . . . . 11 (𝑦 = 0s → (𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 0s )))
2815, 27rexsn 4642 . . . . . . . . . 10 (∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 0s ))
29 addsrid 27911 . . . . . . . . . . . 12 (({ 0s } |s { 1s }) ∈ No → (({ 0s } |s { 1s }) +s 0s ) = ({ 0s } |s { 1s }))
309, 29ax-mp 5 . . . . . . . . . . 11 (({ 0s } |s { 1s }) +s 0s ) = ({ 0s } |s { 1s })
3130eqeq2i 2742 . . . . . . . . . 10 (𝑥 = (({ 0s } |s { 1s }) +s 0s ) ↔ 𝑥 = ({ 0s } |s { 1s }))
3228, 31bitri 275 . . . . . . . . 9 (∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ({ 0s } |s { 1s }))
3332abbii 2796 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {𝑥𝑥 = ({ 0s } |s { 1s })}
3433, 24eqtr4i 2755 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {({ 0s } |s { 1s })}
3525, 34uneq12i 4125 . . . . . 6 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = ({({ 0s } |s { 1s })} ∪ {({ 0s } |s { 1s })})
36 unidm 4116 . . . . . 6 ({({ 0s } |s { 1s })} ∪ {({ 0s } |s { 1s })}) = {({ 0s } |s { 1s })}
3735, 36eqtri 2752 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = {({ 0s } |s { 1s })}
383elexi 3467 . . . . . . . . . 10 1s ∈ V
39 oveq1 7376 . . . . . . . . . . 11 (𝑦 = 1s → (𝑦 +s ({ 0s } |s { 1s })) = ( 1s +s ({ 0s } |s { 1s })))
4039eqeq2d 2740 . . . . . . . . . 10 (𝑦 = 1s → (𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ( 1s +s ({ 0s } |s { 1s }))))
4138, 40rexsn 4642 . . . . . . . . 9 (∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ( 1s +s ({ 0s } |s { 1s })))
4241abbii 2796 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = ( 1s +s ({ 0s } |s { 1s }))}
43 df-sn 4586 . . . . . . . 8 {( 1s +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = ( 1s +s ({ 0s } |s { 1s }))}
4442, 43eqtr4i 2755 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {( 1s +s ({ 0s } |s { 1s }))}
45 oveq2 7377 . . . . . . . . . . . 12 (𝑦 = 1s → (({ 0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s }) +s 1s ))
4645eqeq2d 2740 . . . . . . . . . . 11 (𝑦 = 1s → (𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s )))
4738, 46rexsn 4642 . . . . . . . . . 10 (∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s ))
48 addscom 27913 . . . . . . . . . . . 12 ((({ 0s } |s { 1s }) ∈ No ∧ 1s No ) → (({ 0s } |s { 1s }) +s 1s ) = ( 1s +s ({ 0s } |s { 1s })))
499, 3, 48mp2an 692 . . . . . . . . . . 11 (({ 0s } |s { 1s }) +s 1s ) = ( 1s +s ({ 0s } |s { 1s }))
5049eqeq2i 2742 . . . . . . . . . 10 (𝑥 = (({ 0s } |s { 1s }) +s 1s ) ↔ 𝑥 = ( 1s +s ({ 0s } |s { 1s })))
5147, 50bitri 275 . . . . . . . . 9 (∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ( 1s +s ({ 0s } |s { 1s })))
5251abbii 2796 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {𝑥𝑥 = ( 1s +s ({ 0s } |s { 1s }))}
5352, 43eqtr4i 2755 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {( 1s +s ({ 0s } |s { 1s }))}
5444, 53uneq12i 4125 . . . . . 6 ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = ({( 1s +s ({ 0s } |s { 1s }))} ∪ {( 1s +s ({ 0s } |s { 1s }))})
55 unidm 4116 . . . . . 6 ({( 1s +s ({ 0s } |s { 1s }))} ∪ {( 1s +s ({ 0s } |s { 1s }))}) = {( 1s +s ({ 0s } |s { 1s }))}
5654, 55eqtri 2752 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = {( 1s +s ({ 0s } |s { 1s }))}
5737, 56oveq12i 7381 . . . 4 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})) = ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
58 ral0 4472 . . . . . 6 𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) <s 𝑥
59 scutcut 27747 . . . . . . . . . . 11 ({ 0s } <<s { 1s } → (({ 0s } |s { 1s }) ∈ No ∧ { 0s } <<s {({ 0s } |s { 1s })} ∧ {({ 0s } |s { 1s })} <<s { 1s }))
607, 59syl 17 . . . . . . . . . 10 (⊤ → (({ 0s } |s { 1s }) ∈ No ∧ { 0s } <<s {({ 0s } |s { 1s })} ∧ {({ 0s } |s { 1s })} <<s { 1s }))
6160simp3d 1144 . . . . . . . . 9 (⊤ → {({ 0s } |s { 1s })} <<s { 1s })
62 ovex 7402 . . . . . . . . . . 11 ({ 0s } |s { 1s }) ∈ V
6362snid 4622 . . . . . . . . . 10 ({ 0s } |s { 1s }) ∈ {({ 0s } |s { 1s })}
6463a1i 11 . . . . . . . . 9 (⊤ → ({ 0s } |s { 1s }) ∈ {({ 0s } |s { 1s })})
6538snid 4622 . . . . . . . . . 10 1s ∈ { 1s }
6665a1i 11 . . . . . . . . 9 (⊤ → 1s ∈ { 1s })
6761, 64, 66ssltsepcd 27740 . . . . . . . 8 (⊤ → ({ 0s } |s { 1s }) <s 1s )
6867mptru 1547 . . . . . . 7 ({ 0s } |s { 1s }) <s 1s
69 breq1 5105 . . . . . . . 8 (𝑦 = ({ 0s } |s { 1s }) → (𝑦 <s 1s ↔ ({ 0s } |s { 1s }) <s 1s ))
7062, 69ralsn 4641 . . . . . . 7 (∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s ↔ ({ 0s } |s { 1s }) <s 1s )
7168, 70mpbir 231 . . . . . 6 𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s
724, 8addscld 27927 . . . . . . . . 9 (⊤ → ( 1s +s ({ 0s } |s { 1s })) ∈ No )
738sltp1d 27962 . . . . . . . . . 10 (⊤ → ({ 0s } |s { 1s }) <s (({ 0s } |s { 1s }) +s 1s ))
7473, 49breqtrdi 5143 . . . . . . . . 9 (⊤ → ({ 0s } |s { 1s }) <s ( 1s +s ({ 0s } |s { 1s })))
758, 72, 74ssltsn 27738 . . . . . . . 8 (⊤ → {({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))})
7675mptru 1547 . . . . . . 7 {({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))}
77 snelpwi 5398 . . . . . . . . 9 ( 0s No → { 0s } ∈ 𝒫 No )
781, 77ax-mp 5 . . . . . . . 8 { 0s } ∈ 𝒫 No
79 nulssgt 27744 . . . . . . . 8 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
8078, 79ax-mp 5 . . . . . . 7 { 0s } <<s ∅
81 eqid 2729 . . . . . . 7 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
82 df-1s 27774 . . . . . . 7 1s = ({ 0s } |s ∅)
83 slerec 27765 . . . . . . 7 ((({({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))} ∧ { 0s } <<s ∅) ∧ (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∧ 1s = ({ 0s } |s ∅))) → (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s ↔ (∀𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s )))
8476, 80, 81, 82, 83mp4an 693 . . . . . 6 (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s ↔ (∀𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s ))
8558, 71, 84mpbir2an 711 . . . . 5 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s
8660simp2d 1143 . . . . . . . . . . 11 (⊤ → { 0s } <<s {({ 0s } |s { 1s })})
8715snid 4622 . . . . . . . . . . . 12 0s ∈ { 0s }
8887a1i 11 . . . . . . . . . . 11 (⊤ → 0s ∈ { 0s })
8986, 88, 64ssltsepcd 27740 . . . . . . . . . 10 (⊤ → 0s <s ({ 0s } |s { 1s }))
9089mptru 1547 . . . . . . . . 9 0s <s ({ 0s } |s { 1s })
91 sltadd1 27939 . . . . . . . . . 10 (( 0s No ∧ ({ 0s } |s { 1s }) ∈ No ∧ 1s No ) → ( 0s <s ({ 0s } |s { 1s }) ↔ ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s )))
921, 9, 3, 91mp3an 1463 . . . . . . . . 9 ( 0s <s ({ 0s } |s { 1s }) ↔ ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s ))
9390, 92mpbi 230 . . . . . . . 8 ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s )
94 addslid 27915 . . . . . . . . 9 ( 1s No → ( 0s +s 1s ) = 1s )
953, 94ax-mp 5 . . . . . . . 8 ( 0s +s 1s ) = 1s
9693, 95, 493brtr3i 5131 . . . . . . 7 1s <s ( 1s +s ({ 0s } |s { 1s }))
97 ovex 7402 . . . . . . . 8 ( 1s +s ({ 0s } |s { 1s })) ∈ V
98 breq2 5106 . . . . . . . 8 (𝑥 = ( 1s +s ({ 0s } |s { 1s })) → ( 1s <s 𝑥 ↔ 1s <s ( 1s +s ({ 0s } |s { 1s }))))
9997, 98ralsn 4641 . . . . . . 7 (∀𝑥 ∈ {( 1s +s ({ 0s } |s { 1s }))} 1s <s 𝑥 ↔ 1s <s ( 1s +s ({ 0s } |s { 1s })))
10096, 99mpbir 231 . . . . . 6 𝑥 ∈ {( 1s +s ({ 0s } |s { 1s }))} 1s <s 𝑥
10175scutcld 27749 . . . . . . . . 9 (⊤ → ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No )
102 scutcut 27747 . . . . . . . . . . . 12 ({({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))} → (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No ∧ {({ 0s } |s { 1s })} <<s {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})} ∧ {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})} <<s {( 1s +s ({ 0s } |s { 1s }))}))
10375, 102syl 17 . . . . . . . . . . 11 (⊤ → (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No ∧ {({ 0s } |s { 1s })} <<s {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})} ∧ {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})} <<s {( 1s +s ({ 0s } |s { 1s }))}))
104103simp2d 1143 . . . . . . . . . 10 (⊤ → {({ 0s } |s { 1s })} <<s {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})})
105 ovex 7402 . . . . . . . . . . . 12 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ V
106105snid 4622 . . . . . . . . . . 11 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})}
107106a1i 11 . . . . . . . . . 10 (⊤ → ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})})
108104, 64, 107ssltsepcd 27740 . . . . . . . . 9 (⊤ → ({ 0s } |s { 1s }) <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))
1092, 8, 101, 89, 108slttrd 27704 . . . . . . . 8 (⊤ → 0s <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))
110109mptru 1547 . . . . . . 7 0s <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
111 breq1 5105 . . . . . . . 8 (𝑦 = 0s → (𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ↔ 0s <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})))
11215, 111ralsn 4641 . . . . . . 7 (∀𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ↔ 0s <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))
113110, 112mpbir 231 . . . . . 6 𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
114 slerec 27765 . . . . . . 7 ((({ 0s } <<s ∅ ∧ {({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))}) ∧ ( 1s = ({ 0s } |s ∅) ∧ ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))) → ( 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ↔ (∀𝑥 ∈ {( 1s +s ({ 0s } |s { 1s }))} 1s <s 𝑥 ∧ ∀𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))))
11580, 76, 82, 81, 114mp4an 693 . . . . . 6 ( 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ↔ (∀𝑥 ∈ {( 1s +s ({ 0s } |s { 1s }))} 1s <s 𝑥 ∧ ∀𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})))
116100, 113, 115mpbir2an 711 . . . . 5 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
117101mptru 1547 . . . . . 6 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No
118 sletri3 27700 . . . . . 6 ((({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No ∧ 1s No ) → (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = 1s ↔ (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s ∧ 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))))
119117, 3, 118mp2an 692 . . . . 5 (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = 1s ↔ (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s ∧ 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})))
12085, 116, 119mpbir2an 711 . . . 4 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = 1s
12157, 120eqtri 2752 . . 3 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})) = 1s
12214, 121eqtri 2752 . 2 (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = 1s
12311, 122eqtri 2752 1 (2s ·s ({ 0s } |s { 1s })) = 1s
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  {cab 2707  wral 3044  wrex 3053  cun 3909  c0 4292  𝒫 cpw 4559  {csn 4585   class class class wbr 5102  (class class class)co 7369   No csur 27584   <s cslt 27585   ≤s csle 27689   <<s csslt 27726   |s cscut 27728   0s c0s 27771   1s c1s 27772   +s cadds 27906   ·s cmuls 28049  2sc2s 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-1s 27774  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec 27885  df-norec2 27896  df-adds 27907  df-negs 27967  df-subs 27968  df-muls 28050  df-2s 28338
This theorem is referenced by:  nohalf  28351  pw2recs  28365  halfcut  28381
  Copyright terms: Public domain W3C validator