| Step | Hyp | Ref
| Expression |
| 1 | | 0sno 27790 |
. . . . . . 7
⊢
0s ∈ No |
| 2 | 1 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 0s ∈ No ) |
| 3 | | 1sno 27791 |
. . . . . . 7
⊢
1s ∈ No |
| 4 | 3 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 1s ∈ No ) |
| 5 | | 0slt1s 27793 |
. . . . . . 7
⊢
0s <s 1s |
| 6 | 5 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 0s <s 1s ) |
| 7 | 2, 4, 6 | ssltsn 27756 |
. . . . 5
⊢ (⊤
→ { 0s } <<s { 1s }) |
| 8 | 7 | scutcld 27767 |
. . . 4
⊢ (⊤
→ ({ 0s } |s { 1s }) ∈
No ) |
| 9 | 8 | mptru 1547 |
. . 3
⊢ ({
0s } |s { 1s }) ∈ No
|
| 10 | | no2times 28355 |
. . 3
⊢ (({
0s } |s { 1s }) ∈ No
→ (2s ·s ({ 0s } |s {
1s })) = (({ 0s } |s { 1s }) +s ({
0s } |s { 1s }))) |
| 11 | 9, 10 | ax-mp 5 |
. 2
⊢
(2s ·s ({ 0s } |s {
1s })) = (({ 0s } |s { 1s }) +s ({
0s } |s { 1s })) |
| 12 | | eqidd 2736 |
. . . . 5
⊢ (⊤
→ ({ 0s } |s { 1s }) = ({ 0s } |s {
1s })) |
| 13 | 7, 7, 12, 12 | addsunif 27961 |
. . . 4
⊢ (⊤
→ (({ 0s } |s { 1s }) +s ({ 0s
} |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
0s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
1s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)}))) |
| 14 | 13 | mptru 1547 |
. . 3
⊢ (({
0s } |s { 1s }) +s ({ 0s } |s {
1s })) = (({𝑥
∣ ∃𝑦 ∈ {
0s }𝑥 = (𝑦 +s ({ 0s
} |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s })
+s 𝑦)}) |s
({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
1s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)})) |
| 15 | 1 | elexi 3482 |
. . . . . . . . . . 11
⊢
0s ∈ V |
| 16 | | oveq1 7412 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0s → (𝑦 +s ({ 0s
} |s { 1s })) = ( 0s +s ({ 0s } |s
{ 1s }))) |
| 17 | 16 | eqeq2d 2746 |
. . . . . . . . . . 11
⊢ (𝑦 = 0s → (𝑥 = (𝑦 +s ({ 0s } |s {
1s })) ↔ 𝑥
= ( 0s +s ({ 0s } |s { 1s
})))) |
| 18 | 15, 17 | rexsn 4658 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈ {
0s }𝑥 = (𝑦 +s ({ 0s
} |s { 1s })) ↔ 𝑥 = ( 0s +s ({
0s } |s { 1s }))) |
| 19 | | addslid 27927 |
. . . . . . . . . . . 12
⊢ (({
0s } |s { 1s }) ∈ No
→ ( 0s +s ({ 0s } |s { 1s }))
= ({ 0s } |s { 1s })) |
| 20 | 9, 19 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (
0s +s ({ 0s } |s { 1s })) = ({
0s } |s { 1s }) |
| 21 | 20 | eqeq2i 2748 |
. . . . . . . . . 10
⊢ (𝑥 = ( 0s +s
({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s
})) |
| 22 | 18, 21 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ {
0s }𝑥 = (𝑦 +s ({ 0s
} |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s
})) |
| 23 | 22 | abbii 2802 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} = {𝑥
∣ 𝑥 = ({
0s } |s { 1s })} |
| 24 | | df-sn 4602 |
. . . . . . . 8
⊢ {({
0s } |s { 1s })} = {𝑥 ∣ 𝑥 = ({ 0s } |s { 1s
})} |
| 25 | 23, 24 | eqtr4i 2761 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} = {({ 0s } |s { 1s
})} |
| 26 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0s → (({
0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s })
+s 0s )) |
| 27 | 26 | eqeq2d 2746 |
. . . . . . . . . . 11
⊢ (𝑦 = 0s → (𝑥 = (({ 0s } |s {
1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s })
+s 0s ))) |
| 28 | 15, 27 | rexsn 4658 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈ {
0s }𝑥 = (({
0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s })
+s 0s )) |
| 29 | | addsrid 27923 |
. . . . . . . . . . . 12
⊢ (({
0s } |s { 1s }) ∈ No
→ (({ 0s } |s { 1s }) +s 0s )
= ({ 0s } |s { 1s })) |
| 30 | 9, 29 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (({
0s } |s { 1s }) +s 0s ) = ({
0s } |s { 1s }) |
| 31 | 30 | eqeq2i 2748 |
. . . . . . . . . 10
⊢ (𝑥 = (({ 0s } |s {
1s }) +s 0s ) ↔ 𝑥 = ({ 0s } |s { 1s
})) |
| 32 | 28, 31 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ {
0s }𝑥 = (({
0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ({ 0s } |s { 1s
})) |
| 33 | 32 | abbii 2802 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s {
1s }) +s 𝑦)} = {𝑥 ∣ 𝑥 = ({ 0s } |s { 1s
})} |
| 34 | 33, 24 | eqtr4i 2761 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s {
1s }) +s 𝑦)} = {({ 0s } |s { 1s
})} |
| 35 | 25, 34 | uneq12i 4141 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
0s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)}) = ({({ 0s } |s { 1s
})} ∪ {({ 0s } |s { 1s })}) |
| 36 | | unidm 4132 |
. . . . . 6
⊢ ({({
0s } |s { 1s })} ∪ {({ 0s } |s {
1s })}) = {({ 0s } |s { 1s
})} |
| 37 | 35, 36 | eqtri 2758 |
. . . . 5
⊢ ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
0s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)}) = {({ 0s } |s { 1s
})} |
| 38 | 3 | elexi 3482 |
. . . . . . . . . 10
⊢
1s ∈ V |
| 39 | | oveq1 7412 |
. . . . . . . . . . 11
⊢ (𝑦 = 1s → (𝑦 +s ({ 0s
} |s { 1s })) = ( 1s +s ({ 0s } |s
{ 1s }))) |
| 40 | 39 | eqeq2d 2746 |
. . . . . . . . . 10
⊢ (𝑦 = 1s → (𝑥 = (𝑦 +s ({ 0s } |s {
1s })) ↔ 𝑥
= ( 1s +s ({ 0s } |s { 1s
})))) |
| 41 | 38, 40 | rexsn 4658 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ {
1s }𝑥 = (𝑦 +s ({ 0s
} |s { 1s })) ↔ 𝑥 = ( 1s +s ({
0s } |s { 1s }))) |
| 42 | 41 | abbii 2802 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} = {𝑥
∣ 𝑥 = ( 1s
+s ({ 0s } |s { 1s }))} |
| 43 | | df-sn 4602 |
. . . . . . . 8
⊢ {(
1s +s ({ 0s } |s { 1s }))} = {𝑥 ∣ 𝑥 = ( 1s +s ({
0s } |s { 1s }))} |
| 44 | 42, 43 | eqtr4i 2761 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} = {( 1s +s ({ 0s } |s {
1s }))} |
| 45 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑦 = 1s → (({
0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s })
+s 1s )) |
| 46 | 45 | eqeq2d 2746 |
. . . . . . . . . . 11
⊢ (𝑦 = 1s → (𝑥 = (({ 0s } |s {
1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s })
+s 1s ))) |
| 47 | 38, 46 | rexsn 4658 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈ {
1s }𝑥 = (({
0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s })
+s 1s )) |
| 48 | | addscom 27925 |
. . . . . . . . . . . 12
⊢ ((({
0s } |s { 1s }) ∈ No
∧ 1s ∈ No ) → (({
0s } |s { 1s }) +s 1s ) = (
1s +s ({ 0s } |s { 1s
}))) |
| 49 | 9, 3, 48 | mp2an 692 |
. . . . . . . . . . 11
⊢ (({
0s } |s { 1s }) +s 1s ) = (
1s +s ({ 0s } |s { 1s
})) |
| 50 | 49 | eqeq2i 2748 |
. . . . . . . . . 10
⊢ (𝑥 = (({ 0s } |s {
1s }) +s 1s ) ↔ 𝑥 = ( 1s +s ({
0s } |s { 1s }))) |
| 51 | 47, 50 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ {
1s }𝑥 = (({
0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ( 1s +s ({
0s } |s { 1s }))) |
| 52 | 51 | abbii 2802 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s {
1s }) +s 𝑦)} = {𝑥 ∣ 𝑥 = ( 1s +s ({
0s } |s { 1s }))} |
| 53 | 52, 43 | eqtr4i 2761 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s {
1s }) +s 𝑦)} = {( 1s +s ({
0s } |s { 1s }))} |
| 54 | 44, 53 | uneq12i 4141 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
1s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)}) = ({( 1s +s ({
0s } |s { 1s }))} ∪ {( 1s +s ({
0s } |s { 1s }))}) |
| 55 | | unidm 4132 |
. . . . . 6
⊢ ({(
1s +s ({ 0s } |s { 1s }))} ∪ {(
1s +s ({ 0s } |s { 1s }))}) = {(
1s +s ({ 0s } |s { 1s
}))} |
| 56 | 54, 55 | eqtri 2758 |
. . . . 5
⊢ ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
1s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)}) = {( 1s +s ({
0s } |s { 1s }))} |
| 57 | 37, 56 | oveq12i 7417 |
. . . 4
⊢ (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
0s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
1s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)})) = ({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))}) |
| 58 | | ral0 4488 |
. . . . . 6
⊢
∀𝑥 ∈
∅ ({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))}) <s 𝑥 |
| 59 | | scutcut 27765 |
. . . . . . . . . . 11
⊢ ({
0s } <<s { 1s } → (({ 0s } |s {
1s }) ∈ No ∧ { 0s
} <<s {({ 0s } |s { 1s })} ∧ {({ 0s
} |s { 1s })} <<s { 1s })) |
| 60 | 7, 59 | syl 17 |
. . . . . . . . . 10
⊢ (⊤
→ (({ 0s } |s { 1s }) ∈
No ∧ { 0s } <<s {({ 0s } |s {
1s })} ∧ {({ 0s } |s { 1s })} <<s {
1s })) |
| 61 | 60 | simp3d 1144 |
. . . . . . . . 9
⊢ (⊤
→ {({ 0s } |s { 1s })} <<s { 1s
}) |
| 62 | | ovex 7438 |
. . . . . . . . . . 11
⊢ ({
0s } |s { 1s }) ∈ V |
| 63 | 62 | snid 4638 |
. . . . . . . . . 10
⊢ ({
0s } |s { 1s }) ∈ {({ 0s } |s {
1s })} |
| 64 | 63 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ({ 0s } |s { 1s }) ∈ {({ 0s } |s {
1s })}) |
| 65 | 38 | snid 4638 |
. . . . . . . . . 10
⊢
1s ∈ { 1s } |
| 66 | 65 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 1s ∈ { 1s }) |
| 67 | 61, 64, 66 | ssltsepcd 27758 |
. . . . . . . 8
⊢ (⊤
→ ({ 0s } |s { 1s }) <s 1s
) |
| 68 | 67 | mptru 1547 |
. . . . . . 7
⊢ ({
0s } |s { 1s }) <s 1s |
| 69 | | breq1 5122 |
. . . . . . . 8
⊢ (𝑦 = ({ 0s } |s {
1s }) → (𝑦
<s 1s ↔ ({ 0s } |s { 1s }) <s
1s )) |
| 70 | 62, 69 | ralsn 4657 |
. . . . . . 7
⊢
(∀𝑦 ∈
{({ 0s } |s { 1s })}𝑦 <s 1s ↔ ({ 0s
} |s { 1s }) <s 1s ) |
| 71 | 68, 70 | mpbir 231 |
. . . . . 6
⊢
∀𝑦 ∈ {({
0s } |s { 1s })}𝑦 <s 1s |
| 72 | 4, 8 | addscld 27939 |
. . . . . . . . 9
⊢ (⊤
→ ( 1s +s ({ 0s } |s { 1s }))
∈ No ) |
| 73 | 8 | sltp1d 27974 |
. . . . . . . . . 10
⊢ (⊤
→ ({ 0s } |s { 1s }) <s (({ 0s } |s {
1s }) +s 1s )) |
| 74 | 73, 49 | breqtrdi 5160 |
. . . . . . . . 9
⊢ (⊤
→ ({ 0s } |s { 1s }) <s ( 1s
+s ({ 0s } |s { 1s }))) |
| 75 | 8, 72, 74 | ssltsn 27756 |
. . . . . . . 8
⊢ (⊤
→ {({ 0s } |s { 1s })} <<s {( 1s
+s ({ 0s } |s { 1s }))}) |
| 76 | 75 | mptru 1547 |
. . . . . . 7
⊢ {({
0s } |s { 1s })} <<s {( 1s +s
({ 0s } |s { 1s }))} |
| 77 | | snelpwi 5418 |
. . . . . . . . 9
⊢ (
0s ∈ No → { 0s }
∈ 𝒫 No ) |
| 78 | 1, 77 | ax-mp 5 |
. . . . . . . 8
⊢ {
0s } ∈ 𝒫 No
|
| 79 | | nulssgt 27762 |
. . . . . . . 8
⊢ ({
0s } ∈ 𝒫 No → {
0s } <<s ∅) |
| 80 | 78, 79 | ax-mp 5 |
. . . . . . 7
⊢ {
0s } <<s ∅ |
| 81 | | eqid 2735 |
. . . . . . 7
⊢ ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) = ({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))}) |
| 82 | | df-1s 27789 |
. . . . . . 7
⊢
1s = ({ 0s } |s ∅) |
| 83 | | slerec 27783 |
. . . . . . 7
⊢ ((({({
0s } |s { 1s })} <<s {( 1s +s
({ 0s } |s { 1s }))} ∧ { 0s } <<s
∅) ∧ (({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))}) = ({({ 0s
} |s { 1s })} |s {( 1s +s ({ 0s }
|s { 1s }))}) ∧ 1s = ({ 0s } |s ∅)))
→ (({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))}) ≤s 1s
↔ (∀𝑥 ∈
∅ ({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s {
1s })}𝑦 <s
1s ))) |
| 84 | 76, 80, 81, 82, 83 | mp4an 693 |
. . . . . 6
⊢ (({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ≤s 1s ↔
(∀𝑥 ∈ ∅
({({ 0s } |s { 1s })} |s {( 1s +s
({ 0s } |s { 1s }))}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s {
1s })}𝑦 <s
1s )) |
| 85 | 58, 71, 84 | mpbir2an 711 |
. . . . 5
⊢ ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ≤s 1s |
| 86 | 60 | simp2d 1143 |
. . . . . . . . . . 11
⊢ (⊤
→ { 0s } <<s {({ 0s } |s { 1s
})}) |
| 87 | 15 | snid 4638 |
. . . . . . . . . . . 12
⊢
0s ∈ { 0s } |
| 88 | 87 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ 0s ∈ { 0s }) |
| 89 | 86, 88, 64 | ssltsepcd 27758 |
. . . . . . . . . 10
⊢ (⊤
→ 0s <s ({ 0s } |s { 1s
})) |
| 90 | 89 | mptru 1547 |
. . . . . . . . 9
⊢
0s <s ({ 0s } |s { 1s }) |
| 91 | | sltadd1 27951 |
. . . . . . . . . 10
⊢ ((
0s ∈ No ∧ ({ 0s }
|s { 1s }) ∈ No ∧
1s ∈ No ) → ( 0s
<s ({ 0s } |s { 1s }) ↔ ( 0s
+s 1s ) <s (({ 0s } |s { 1s })
+s 1s ))) |
| 92 | 1, 9, 3, 91 | mp3an 1463 |
. . . . . . . . 9
⊢ (
0s <s ({ 0s } |s { 1s }) ↔ (
0s +s 1s ) <s (({ 0s } |s {
1s }) +s 1s )) |
| 93 | 90, 92 | mpbi 230 |
. . . . . . . 8
⊢ (
0s +s 1s ) <s (({ 0s } |s {
1s }) +s 1s ) |
| 94 | | addslid 27927 |
. . . . . . . . 9
⊢ (
1s ∈ No → ( 0s
+s 1s ) = 1s ) |
| 95 | 3, 94 | ax-mp 5 |
. . . . . . . 8
⊢ (
0s +s 1s ) = 1s |
| 96 | 93, 95, 49 | 3brtr3i 5148 |
. . . . . . 7
⊢
1s <s ( 1s +s ({ 0s } |s {
1s })) |
| 97 | | ovex 7438 |
. . . . . . . 8
⊢ (
1s +s ({ 0s } |s { 1s })) ∈
V |
| 98 | | breq2 5123 |
. . . . . . . 8
⊢ (𝑥 = ( 1s +s
({ 0s } |s { 1s })) → ( 1s <s 𝑥 ↔ 1s <s (
1s +s ({ 0s } |s { 1s
})))) |
| 99 | 97, 98 | ralsn 4657 |
. . . . . . 7
⊢
(∀𝑥 ∈ {(
1s +s ({ 0s } |s { 1s }))}
1s <s 𝑥
↔ 1s <s ( 1s +s ({ 0s } |s
{ 1s }))) |
| 100 | 96, 99 | mpbir 231 |
. . . . . 6
⊢
∀𝑥 ∈ {(
1s +s ({ 0s } |s { 1s }))}
1s <s 𝑥 |
| 101 | 75 | scutcld 27767 |
. . . . . . . . 9
⊢ (⊤
→ ({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))}) ∈ No ) |
| 102 | | scutcut 27765 |
. . . . . . . . . . . 12
⊢ ({({
0s } |s { 1s })} <<s {( 1s +s
({ 0s } |s { 1s }))} → (({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))}) ∈ No ∧ {({
0s } |s { 1s })} <<s {({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))})} ∧ {({({ 0s } |s { 1s })} |s {(
1s +s ({ 0s } |s { 1s }))})}
<<s {( 1s +s ({ 0s } |s { 1s
}))})) |
| 103 | 75, 102 | syl 17 |
. . . . . . . . . . 11
⊢ (⊤
→ (({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))}) ∈ No ∧ {({ 0s } |s { 1s })}
<<s {({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))})} ∧ {({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))})} <<s {( 1s
+s ({ 0s } |s { 1s }))})) |
| 104 | 103 | simp2d 1143 |
. . . . . . . . . 10
⊢ (⊤
→ {({ 0s } |s { 1s })} <<s {({({ 0s
} |s { 1s })} |s {( 1s +s ({ 0s }
|s { 1s }))})}) |
| 105 | | ovex 7438 |
. . . . . . . . . . . 12
⊢ ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ∈ V |
| 106 | 105 | snid 4638 |
. . . . . . . . . . 11
⊢ ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ∈ {({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))})} |
| 107 | 106 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ ({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))}) ∈ {({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))})}) |
| 108 | 104, 64, 107 | ssltsepcd 27758 |
. . . . . . . . 9
⊢ (⊤
→ ({ 0s } |s { 1s }) <s ({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))})) |
| 109 | 2, 8, 101, 89, 108 | slttrd 27723 |
. . . . . . . 8
⊢ (⊤
→ 0s <s ({({ 0s } |s { 1s })} |s {(
1s +s ({ 0s } |s { 1s
}))})) |
| 110 | 109 | mptru 1547 |
. . . . . . 7
⊢
0s <s ({({ 0s } |s { 1s })} |s {(
1s +s ({ 0s } |s { 1s
}))}) |
| 111 | | breq1 5122 |
. . . . . . . 8
⊢ (𝑦 = 0s → (𝑦 <s ({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))}) ↔ 0s <s ({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))}))) |
| 112 | 15, 111 | ralsn 4657 |
. . . . . . 7
⊢
(∀𝑦 ∈ {
0s }𝑦 <s ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ↔ 0s <s ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))})) |
| 113 | 110, 112 | mpbir 231 |
. . . . . 6
⊢
∀𝑦 ∈ {
0s }𝑦 <s ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) |
| 114 | | slerec 27783 |
. . . . . . 7
⊢ ((({
0s } <<s ∅ ∧ {({ 0s } |s { 1s
})} <<s {( 1s +s ({ 0s } |s {
1s }))}) ∧ ( 1s = ({ 0s } |s ∅)
∧ ({({ 0s } |s { 1s })} |s {( 1s
+s ({ 0s } |s { 1s }))}) = ({({ 0s
} |s { 1s })} |s {( 1s +s ({ 0s }
|s { 1s }))}))) → ( 1s ≤s ({({ 0s } |s
{ 1s })} |s {( 1s +s ({ 0s } |s {
1s }))}) ↔ (∀𝑥 ∈ {( 1s +s ({
0s } |s { 1s }))} 1s <s 𝑥 ∧ ∀𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s {
1s })} |s {( 1s +s ({ 0s } |s {
1s }))})))) |
| 115 | 80, 76, 82, 81, 114 | mp4an 693 |
. . . . . 6
⊢ (
1s ≤s ({({ 0s } |s { 1s })} |s {(
1s +s ({ 0s } |s { 1s }))}) ↔
(∀𝑥 ∈ {(
1s +s ({ 0s } |s { 1s }))}
1s <s 𝑥 ∧
∀𝑦 ∈ {
0s }𝑦 <s ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}))) |
| 116 | 100, 113,
115 | mpbir2an 711 |
. . . . 5
⊢
1s ≤s ({({ 0s } |s { 1s })} |s {(
1s +s ({ 0s } |s { 1s
}))}) |
| 117 | 101 | mptru 1547 |
. . . . . 6
⊢ ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ∈ No
|
| 118 | | sletri3 27719 |
. . . . . 6
⊢ ((({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ∈ No
∧ 1s ∈ No ) →
(({({ 0s } |s { 1s })} |s {( 1s +s
({ 0s } |s { 1s }))}) = 1s ↔ (({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ≤s 1s ∧
1s ≤s ({({ 0s } |s { 1s })} |s {(
1s +s ({ 0s } |s { 1s
}))})))) |
| 119 | 117, 3, 118 | mp2an 692 |
. . . . 5
⊢ (({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) = 1s ↔ (({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) ≤s 1s ∧
1s ≤s ({({ 0s } |s { 1s })} |s {(
1s +s ({ 0s } |s { 1s
}))}))) |
| 120 | 85, 116, 119 | mpbir2an 711 |
. . . 4
⊢ ({({
0s } |s { 1s })} |s {( 1s +s ({
0s } |s { 1s }))}) = 1s |
| 121 | 57, 120 | eqtri 2758 |
. . 3
⊢ (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
0s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s {
1s }))} ∪ {𝑥
∣ ∃𝑦 ∈ {
1s }𝑥 = (({
0s } |s { 1s }) +s 𝑦)})) = 1s |
| 122 | 14, 121 | eqtri 2758 |
. 2
⊢ (({
0s } |s { 1s }) +s ({ 0s } |s {
1s })) = 1s |
| 123 | 11, 122 | eqtri 2758 |
1
⊢
(2s ·s ({ 0s } |s {
1s })) = 1s |