MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  twocut Structured version   Visualization version   GIF version

Theorem twocut 28346
Description: Two times the cut of zero and one is one. (Contributed by Scott Fenton, 5-Sep-2025.)
Assertion
Ref Expression
twocut (2s ·s ({ 0s } |s { 1s })) = 1s

Proof of Theorem twocut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27770 . . . . . . 7 0s No
21a1i 11 . . . . . 6 (⊤ → 0s No )
3 1sno 27771 . . . . . . 7 1s No
43a1i 11 . . . . . 6 (⊤ → 1s No )
5 0slt1s 27773 . . . . . . 7 0s <s 1s
65a1i 11 . . . . . 6 (⊤ → 0s <s 1s )
72, 4, 6ssltsn 27733 . . . . 5 (⊤ → { 0s } <<s { 1s })
87scutcld 27744 . . . 4 (⊤ → ({ 0s } |s { 1s }) ∈ No )
98mptru 1548 . . 3 ({ 0s } |s { 1s }) ∈ No
10 no2times 28340 . . 3 (({ 0s } |s { 1s }) ∈ No → (2s ·s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })))
119, 10ax-mp 5 . 2 (2s ·s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s }))
12 eqidd 2732 . . . . 5 (⊤ → ({ 0s } |s { 1s }) = ({ 0s } |s { 1s }))
137, 7, 12, 12addsunif 27945 . . . 4 (⊤ → (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})))
1413mptru 1548 . . 3 (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}))
151elexi 3459 . . . . . . . . . . 11 0s ∈ V
16 oveq1 7353 . . . . . . . . . . . 12 (𝑦 = 0s → (𝑦 +s ({ 0s } |s { 1s })) = ( 0s +s ({ 0s } |s { 1s })))
1716eqeq2d 2742 . . . . . . . . . . 11 (𝑦 = 0s → (𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ( 0s +s ({ 0s } |s { 1s }))))
1815, 17rexsn 4632 . . . . . . . . . 10 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ( 0s +s ({ 0s } |s { 1s })))
19 addslid 27911 . . . . . . . . . . . 12 (({ 0s } |s { 1s }) ∈ No → ( 0s +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s }))
209, 19ax-mp 5 . . . . . . . . . . 11 ( 0s +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s })
2120eqeq2i 2744 . . . . . . . . . 10 (𝑥 = ( 0s +s ({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s }))
2218, 21bitri 275 . . . . . . . . 9 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s }))
2322abbii 2798 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = ({ 0s } |s { 1s })}
24 df-sn 4574 . . . . . . . 8 {({ 0s } |s { 1s })} = {𝑥𝑥 = ({ 0s } |s { 1s })}
2523, 24eqtr4i 2757 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {({ 0s } |s { 1s })}
26 oveq2 7354 . . . . . . . . . . . 12 (𝑦 = 0s → (({ 0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s }) +s 0s ))
2726eqeq2d 2742 . . . . . . . . . . 11 (𝑦 = 0s → (𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 0s )))
2815, 27rexsn 4632 . . . . . . . . . 10 (∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 0s ))
29 addsrid 27907 . . . . . . . . . . . 12 (({ 0s } |s { 1s }) ∈ No → (({ 0s } |s { 1s }) +s 0s ) = ({ 0s } |s { 1s }))
309, 29ax-mp 5 . . . . . . . . . . 11 (({ 0s } |s { 1s }) +s 0s ) = ({ 0s } |s { 1s })
3130eqeq2i 2744 . . . . . . . . . 10 (𝑥 = (({ 0s } |s { 1s }) +s 0s ) ↔ 𝑥 = ({ 0s } |s { 1s }))
3228, 31bitri 275 . . . . . . . . 9 (∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ({ 0s } |s { 1s }))
3332abbii 2798 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {𝑥𝑥 = ({ 0s } |s { 1s })}
3433, 24eqtr4i 2757 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {({ 0s } |s { 1s })}
3525, 34uneq12i 4113 . . . . . 6 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = ({({ 0s } |s { 1s })} ∪ {({ 0s } |s { 1s })})
36 unidm 4104 . . . . . 6 ({({ 0s } |s { 1s })} ∪ {({ 0s } |s { 1s })}) = {({ 0s } |s { 1s })}
3735, 36eqtri 2754 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = {({ 0s } |s { 1s })}
383elexi 3459 . . . . . . . . . 10 1s ∈ V
39 oveq1 7353 . . . . . . . . . . 11 (𝑦 = 1s → (𝑦 +s ({ 0s } |s { 1s })) = ( 1s +s ({ 0s } |s { 1s })))
4039eqeq2d 2742 . . . . . . . . . 10 (𝑦 = 1s → (𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ( 1s +s ({ 0s } |s { 1s }))))
4138, 40rexsn 4632 . . . . . . . . 9 (∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ( 1s +s ({ 0s } |s { 1s })))
4241abbii 2798 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = ( 1s +s ({ 0s } |s { 1s }))}
43 df-sn 4574 . . . . . . . 8 {( 1s +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = ( 1s +s ({ 0s } |s { 1s }))}
4442, 43eqtr4i 2757 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {( 1s +s ({ 0s } |s { 1s }))}
45 oveq2 7354 . . . . . . . . . . . 12 (𝑦 = 1s → (({ 0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s }) +s 1s ))
4645eqeq2d 2742 . . . . . . . . . . 11 (𝑦 = 1s → (𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s )))
4738, 46rexsn 4632 . . . . . . . . . 10 (∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s ))
48 addscom 27909 . . . . . . . . . . . 12 ((({ 0s } |s { 1s }) ∈ No ∧ 1s No ) → (({ 0s } |s { 1s }) +s 1s ) = ( 1s +s ({ 0s } |s { 1s })))
499, 3, 48mp2an 692 . . . . . . . . . . 11 (({ 0s } |s { 1s }) +s 1s ) = ( 1s +s ({ 0s } |s { 1s }))
5049eqeq2i 2744 . . . . . . . . . 10 (𝑥 = (({ 0s } |s { 1s }) +s 1s ) ↔ 𝑥 = ( 1s +s ({ 0s } |s { 1s })))
5147, 50bitri 275 . . . . . . . . 9 (∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ( 1s +s ({ 0s } |s { 1s })))
5251abbii 2798 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {𝑥𝑥 = ( 1s +s ({ 0s } |s { 1s }))}
5352, 43eqtr4i 2757 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {( 1s +s ({ 0s } |s { 1s }))}
5444, 53uneq12i 4113 . . . . . 6 ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = ({( 1s +s ({ 0s } |s { 1s }))} ∪ {( 1s +s ({ 0s } |s { 1s }))})
55 unidm 4104 . . . . . 6 ({( 1s +s ({ 0s } |s { 1s }))} ∪ {( 1s +s ({ 0s } |s { 1s }))}) = {( 1s +s ({ 0s } |s { 1s }))}
5654, 55eqtri 2754 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = {( 1s +s ({ 0s } |s { 1s }))}
5737, 56oveq12i 7358 . . . 4 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})) = ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
58 ral0 4460 . . . . . 6 𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) <s 𝑥
59 scutcut 27742 . . . . . . . . . . 11 ({ 0s } <<s { 1s } → (({ 0s } |s { 1s }) ∈ No ∧ { 0s } <<s {({ 0s } |s { 1s })} ∧ {({ 0s } |s { 1s })} <<s { 1s }))
607, 59syl 17 . . . . . . . . . 10 (⊤ → (({ 0s } |s { 1s }) ∈ No ∧ { 0s } <<s {({ 0s } |s { 1s })} ∧ {({ 0s } |s { 1s })} <<s { 1s }))
6160simp3d 1144 . . . . . . . . 9 (⊤ → {({ 0s } |s { 1s })} <<s { 1s })
62 ovex 7379 . . . . . . . . . . 11 ({ 0s } |s { 1s }) ∈ V
6362snid 4612 . . . . . . . . . 10 ({ 0s } |s { 1s }) ∈ {({ 0s } |s { 1s })}
6463a1i 11 . . . . . . . . 9 (⊤ → ({ 0s } |s { 1s }) ∈ {({ 0s } |s { 1s })})
6538snid 4612 . . . . . . . . . 10 1s ∈ { 1s }
6665a1i 11 . . . . . . . . 9 (⊤ → 1s ∈ { 1s })
6761, 64, 66ssltsepcd 27735 . . . . . . . 8 (⊤ → ({ 0s } |s { 1s }) <s 1s )
6867mptru 1548 . . . . . . 7 ({ 0s } |s { 1s }) <s 1s
69 breq1 5092 . . . . . . . 8 (𝑦 = ({ 0s } |s { 1s }) → (𝑦 <s 1s ↔ ({ 0s } |s { 1s }) <s 1s ))
7062, 69ralsn 4631 . . . . . . 7 (∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s ↔ ({ 0s } |s { 1s }) <s 1s )
7168, 70mpbir 231 . . . . . 6 𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s
724, 8addscld 27923 . . . . . . . . 9 (⊤ → ( 1s +s ({ 0s } |s { 1s })) ∈ No )
738sltp1d 27958 . . . . . . . . . 10 (⊤ → ({ 0s } |s { 1s }) <s (({ 0s } |s { 1s }) +s 1s ))
7473, 49breqtrdi 5130 . . . . . . . . 9 (⊤ → ({ 0s } |s { 1s }) <s ( 1s +s ({ 0s } |s { 1s })))
758, 72, 74ssltsn 27733 . . . . . . . 8 (⊤ → {({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))})
7675mptru 1548 . . . . . . 7 {({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))}
77 snelpwi 5383 . . . . . . . . 9 ( 0s No → { 0s } ∈ 𝒫 No )
781, 77ax-mp 5 . . . . . . . 8 { 0s } ∈ 𝒫 No
79 nulssgt 27739 . . . . . . . 8 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
8078, 79ax-mp 5 . . . . . . 7 { 0s } <<s ∅
81 eqid 2731 . . . . . . 7 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
82 df-1s 27769 . . . . . . 7 1s = ({ 0s } |s ∅)
83 slerec 27760 . . . . . . 7 ((({({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))} ∧ { 0s } <<s ∅) ∧ (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∧ 1s = ({ 0s } |s ∅))) → (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s ↔ (∀𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s )))
8476, 80, 81, 82, 83mp4an 693 . . . . . 6 (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s ↔ (∀𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s ))
8558, 71, 84mpbir2an 711 . . . . 5 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s
8660simp2d 1143 . . . . . . . . . . 11 (⊤ → { 0s } <<s {({ 0s } |s { 1s })})
8715snid 4612 . . . . . . . . . . . 12 0s ∈ { 0s }
8887a1i 11 . . . . . . . . . . 11 (⊤ → 0s ∈ { 0s })
8986, 88, 64ssltsepcd 27735 . . . . . . . . . 10 (⊤ → 0s <s ({ 0s } |s { 1s }))
9089mptru 1548 . . . . . . . . 9 0s <s ({ 0s } |s { 1s })
91 sltadd1 27935 . . . . . . . . . 10 (( 0s No ∧ ({ 0s } |s { 1s }) ∈ No ∧ 1s No ) → ( 0s <s ({ 0s } |s { 1s }) ↔ ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s )))
921, 9, 3, 91mp3an 1463 . . . . . . . . 9 ( 0s <s ({ 0s } |s { 1s }) ↔ ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s ))
9390, 92mpbi 230 . . . . . . . 8 ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s )
94 addslid 27911 . . . . . . . . 9 ( 1s No → ( 0s +s 1s ) = 1s )
953, 94ax-mp 5 . . . . . . . 8 ( 0s +s 1s ) = 1s
9693, 95, 493brtr3i 5118 . . . . . . 7 1s <s ( 1s +s ({ 0s } |s { 1s }))
97 ovex 7379 . . . . . . . 8 ( 1s +s ({ 0s } |s { 1s })) ∈ V
98 breq2 5093 . . . . . . . 8 (𝑥 = ( 1s +s ({ 0s } |s { 1s })) → ( 1s <s 𝑥 ↔ 1s <s ( 1s +s ({ 0s } |s { 1s }))))
9997, 98ralsn 4631 . . . . . . 7 (∀𝑥 ∈ {( 1s +s ({ 0s } |s { 1s }))} 1s <s 𝑥 ↔ 1s <s ( 1s +s ({ 0s } |s { 1s })))
10096, 99mpbir 231 . . . . . 6 𝑥 ∈ {( 1s +s ({ 0s } |s { 1s }))} 1s <s 𝑥
10175scutcld 27744 . . . . . . . . 9 (⊤ → ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No )
102 scutcut 27742 . . . . . . . . . . . 12 ({({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))} → (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No ∧ {({ 0s } |s { 1s })} <<s {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})} ∧ {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})} <<s {( 1s +s ({ 0s } |s { 1s }))}))
10375, 102syl 17 . . . . . . . . . . 11 (⊤ → (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No ∧ {({ 0s } |s { 1s })} <<s {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})} ∧ {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})} <<s {( 1s +s ({ 0s } |s { 1s }))}))
104103simp2d 1143 . . . . . . . . . 10 (⊤ → {({ 0s } |s { 1s })} <<s {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})})
105 ovex 7379 . . . . . . . . . . . 12 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ V
106105snid 4612 . . . . . . . . . . 11 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})}
107106a1i 11 . . . . . . . . . 10 (⊤ → ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ {({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})})
108104, 64, 107ssltsepcd 27735 . . . . . . . . 9 (⊤ → ({ 0s } |s { 1s }) <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))
1092, 8, 101, 89, 108slttrd 27698 . . . . . . . 8 (⊤ → 0s <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))
110109mptru 1548 . . . . . . 7 0s <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
111 breq1 5092 . . . . . . . 8 (𝑦 = 0s → (𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ↔ 0s <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})))
11215, 111ralsn 4631 . . . . . . 7 (∀𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ↔ 0s <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))
113110, 112mpbir 231 . . . . . 6 𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
114 slerec 27760 . . . . . . 7 ((({ 0s } <<s ∅ ∧ {({ 0s } |s { 1s })} <<s {( 1s +s ({ 0s } |s { 1s }))}) ∧ ( 1s = ({ 0s } |s ∅) ∧ ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))) → ( 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ↔ (∀𝑥 ∈ {( 1s +s ({ 0s } |s { 1s }))} 1s <s 𝑥 ∧ ∀𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))))
11580, 76, 82, 81, 114mp4an 693 . . . . . 6 ( 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ↔ (∀𝑥 ∈ {( 1s +s ({ 0s } |s { 1s }))} 1s <s 𝑥 ∧ ∀𝑦 ∈ { 0s }𝑦 <s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})))
116100, 113, 115mpbir2an 711 . . . . 5 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})
117101mptru 1548 . . . . . 6 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No
118 sletri3 27694 . . . . . 6 ((({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ∈ No ∧ 1s No ) → (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = 1s ↔ (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s ∧ 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}))))
119117, 3, 118mp2an 692 . . . . 5 (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = 1s ↔ (({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) ≤s 1s ∧ 1s ≤s ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))})))
12085, 116, 119mpbir2an 711 . . . 4 ({({ 0s } |s { 1s })} |s {( 1s +s ({ 0s } |s { 1s }))}) = 1s
12157, 120eqtri 2754 . . 3 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})) = 1s
12214, 121eqtri 2754 . 2 (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = 1s
12311, 122eqtri 2754 1 (2s ·s ({ 0s } |s { 1s })) = 1s
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  {cab 2709  wral 3047  wrex 3056  cun 3895  c0 4280  𝒫 cpw 4547  {csn 4573   class class class wbr 5089  (class class class)co 7346   No csur 27578   <s cslt 27579   ≤s csle 27683   <<s csslt 27720   |s cscut 27722   0s c0s 27766   1s c1s 27767   +s cadds 27902   ·s cmuls 28045  2sc2s 28333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-2s 28334
This theorem is referenced by:  nohalf  28347  pw2recs  28361  halfcut  28378
  Copyright terms: Public domain W3C validator