MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-abl Structured version   Visualization version   GIF version

Definition df-abl 19389
Description: Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
df-abl Abel = (Grp ∩ CMnd)

Detailed syntax breakdown of Definition df-abl
StepHypRef Expression
1 cabl 19387 . 2 class Abel
2 cgrp 18577 . . 3 class Grp
3 ccmn 19386 . . 3 class CMnd
42, 3cin 3886 . 2 class (Grp ∩ CMnd)
51, 4wceq 1539 1 wff Abel = (Grp ∩ CMnd)
Colors of variables: wff setvar class
This definition is referenced by:  isabl  19390  bj-ablssgrp  35447  bj-ablsscmn  35449
  Copyright terms: Public domain W3C validator