| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-abl | Structured version Visualization version GIF version | ||
| Description: Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-abl | ⊢ Abel = (Grp ∩ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cabl 19799 | . 2 class Abel | |
| 2 | cgrp 18951 | . . 3 class Grp | |
| 3 | ccmn 19798 | . . 3 class CMnd | |
| 4 | 2, 3 | cin 3950 | . 2 class (Grp ∩ CMnd) |
| 5 | 1, 4 | wceq 1540 | 1 wff Abel = (Grp ∩ CMnd) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isabl 19802 bj-ablssgrp 37277 bj-ablsscmn 37279 |
| Copyright terms: Public domain | W3C validator |