Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-abl | Structured version Visualization version GIF version |
Description: Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
df-abl | ⊢ Abel = (Grp ∩ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cabl 19277 | . 2 class Abel | |
2 | cgrp 18467 | . . 3 class Grp | |
3 | ccmn 19276 | . . 3 class CMnd | |
4 | 2, 3 | cin 3883 | . 2 class (Grp ∩ CMnd) |
5 | 1, 4 | wceq 1543 | 1 wff Abel = (Grp ∩ CMnd) |
Colors of variables: wff setvar class |
This definition is referenced by: isabl 19280 bj-ablssgrp 35350 bj-ablsscmn 35352 |
Copyright terms: Public domain | W3C validator |